Skip to main content
Log in

Flower Senescence-Strategies and Some Associated Events

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Different strategies of petal senescence and some important events associated with it have been discussed. On the basis of sensitivity to ethylene and associated symptoms of senescence, petal senescence has been classified into five different classes; besides changes in membrane permeability, autophagy and involvement of VPEs (Vacuolar processing enzymes), degradation of nucleic acids, protein turn over and remobilization of essential nutrients during petal senescence have been discussed. Nucleus appears to play a central role in administrating the execution of the events associated with petal senescence. Protein turn over appears to be an important factor governing petal senescence in both ethylene-sensitive and ethylene-insensitive flower systems and that the loss of membrane integrity, vacuolar autophagy and remobilization of essential nutrients being its important consequences. Autophagy seems to be a main process responsible for cell dismantling and remobilization of macromolecules besides final disintegration of nucleus. A large number of senescence-associated genes have been found to be differentially expressed during petal senescence. On the basis of the available literature, a schematic model representing some important events associated with petal senescence has been constructed. The review recommends that more elaborate work is required at cellular and organelle level to understand the ethylene-independent pathway and its execution in both ethylene-sensitive and ethylene-insensitive flower systems. It also recommends that ethylene sensitivity should not be generally assigned to plants at the family level on the basis of response of a few species in a family.

Résumés

des stratégies différentes de pétale senescence et certains événements importants associés ont été discutés. Sur la base d’une sensibilité d’éthylène et les symptômes associés de sénescence, pétale senescence ont été classé en cinq différentes classes ; outre les modifications dans la perméabilité de la membrane, Autophagie et l’implication des VPEs (Vacuolar traitement des enzymes), la dégradation des acides nucléiques, protéines tour sur re de nutriments essentiels au cours de la senescence pétale ont été discutés. Noyau semble jouer un rôle central dans l’administration de l’exécution des événements associés pétale senescence. Tour de protéines sur semble être un facteur important régissant pétale senescence dans les systèmes de fleur d’éthylène sensibles et éthylène-insensible et que la perte d’intégrité de la membrane, Autophagie vacuolar et re de nutriments essentiels à ses conséquences importantes. Autophagie semble être un processus principal responsable du démantèlement de la cellule et re de macromolécules outre finale désintégration du noyau. Un grand nombre de gènes associés senescence a été trouvé pour être exprimé différemment au cours de la senescence pétale. Sur la base de la documentation disponible, un modèle schematic représentant certains événements importants associés pétale senescence a été construit. L’examen recommande qu’un travail plus élaboré est nécessaire au niveau cellulaire et Organite pour comprendre la voie de l’éthylène-indépendante et son exécution dans les deux systèmes de fleur d’éthylène sensibles et éthylène-insensible. Elle recommande également que éthylène sensibilité ne doit pas être généralement affectée aux plantes au niveau familial sur la base de la réponse de quelques espèces dans une famille.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alonso, J. M. & A. Granell. 1995. A putative vacuolar processing enzyme is regulated by ethylene and also during fruit ripening in citrus fruit. Plant Physiology 4: 541–547.

    Article  Google Scholar 

  • Arora, A. & V. P. Singh. 2004. Cysteine protease gene expression and proteolytic activity during floral development and senescence in ethylene-insensitive Gladiolus grandiflora. Journal of Plant Biochemistry and Biotechnology 13: 123–126.

    CAS  Google Scholar 

  • Ascough, G. D., N. P. Mtshali, N. Nogemane & J. van van Staden. 2006. Flower abscission in excised inflorescences of three Plectranthus cultivars. Plant Growth Regulation 48(3): 229–235.

    CAS  Google Scholar 

  • Ashman, T. L. & D. J. Schoen. 1994. How long should flowers live? Nature 371: 788–790.

    Article  CAS  Google Scholar 

  • Avanci, N. C., D. D. Luche, G. H. Goldman & M. H. S. Goldman. 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research 9: 484–505.

    Article  PubMed  CAS  Google Scholar 

  • Azad, A. K., T. Y. Ishikawa, Th Ishikawa, Y. Sawa & H. Shibata. 2008. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. Journal of Experimental Botany 59: 2085–2095.

    Article  PubMed  CAS  Google Scholar 

  • Azeez, A., A. P. Sane, D. Bhatnagar & P. Nath. 2007. Enhanced expression of serine proteases during floral senescence in gladiolus. Phytochemistry 68: 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  • Balamurugan, K. & W. Schaffner. 2006. Copper homeostasis in eukaryotes: teetering on a tightrope. Biochimica et biophysica Acta 1763: 737–746.

    Article  PubMed  CAS  Google Scholar 

  • Bassham, D. C., M. Laporte, F. Marty, Y. Moriyasu, Y. Ohsumi, L. J. Olsen & K. Yoshimoto. 2006. Autophagy in development and stress responses of plants. Autophagy 2: 2–11.

    PubMed  CAS  Google Scholar 

  • Beutelmann, P. & H. Kende. 1977. Membrane lipids in senescing flower tissue of Ipomoea tricolor. Plant Physiology 59: 883–893.

    Article  Google Scholar 

  • Bieleski, R. L. 1995. Onset of phloem export from senescent petals of daylily. Plant Physiology 109: 557–565.

    PubMed  CAS  Google Scholar 

  • Bisshopp, A., A. P. Mähönen & Y. Helariutta. 2006. Signs of change: hormone receptors that regulate plant development. Development 133: 1857–1869.

  • Borochov, A. & W. R. Woodson. 1989. Physiology and biochemistry of flower petal senescence. Horticultural Review 11: 15–43.

    CAS  Google Scholar 

  • ———, S. Mayak & R. Broun. 1982. The involvement of water stress and ethylene in the senescence of cut carnation petals. Journal of Experimental Botany 33: 1202–1209.

    Article  CAS  Google Scholar 

  • Breeze, E., C. Wagstaff, E. Harrison, I. Branke, H. Rogers & A. D. Stead. 2004. Gene expression patterns to define stages of postharvest senescence in Alstroemeria petals. Plant Biotechnology Journal 2: 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-wollaston, V. & C. Ainsworth. 1997. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridization. Plant Molecular Biology 33: 821–834.

    Article  PubMed  CAS  Google Scholar 

  • ——— & K. Morris. 2000. Senescence and cell death in Brassica napus and Arabidopsis. Pp 163–174. In: J. A. Bryant, S. G. Hughes, & J. M. Garland (eds). Programmed Cell Death in Animals and Plants. Bios Scientific Publishers Ltd, Oxford.

    Google Scholar 

  • ———, S. Earl, E. Harrison, E. Mathas, S. Navabpour, T. Page & D. Pink. 2003. The molecular analysis of leaf senescence. Plant Biotechnology Journal 1: 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Cabello-Hurtado, F., Y. Batard, J. P. Salaun, F. Durst, F. Pinot & D. Werck-Reichart. 1998. Cloning, expression in yeast and functional characterization of CYP81B1; a plant cytochrome P450 that catalyses in-chain hydroxylation of fatty acids. Journal of Biological Chemistry 273: 7260–7267.

    Article  PubMed  CAS  Google Scholar 

  • Celikel, F. G. & W. G. van Doorn. 1995. Solute leakage, lipid peroxidation, and protein degradation during the senescence of Iris tepals. Plant Physiology 94: 515–521.

    Article  CAS  Google Scholar 

  • Cercos, M., S. Santamaria & J. Carbonell. 1999. Cloning and characterization of TPE4A, a thiol protease gene induced during ovary senescence and seed germination in pea. Plant Physiology 119: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  • Cervantes, E., A. Rodriguez & G. Nicolas. 1994. Ethylene regulates expression of a cysteine protease gene during germination of chick pea (Cicer arientum L.). Plant Molecular Biology 25: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H., M. Jones, G. M. Banowetz & D. G. Clark. 2003. Overproduction of cytokinins in Petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology 132: 2174–2183.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, L. J. & M. L. Jones. 2007. Nutrient remobilization during pollination-induced corolla senescence in Petunia. Acta Horticulturae 755: 181–190.

    CAS  Google Scholar 

  • ——— & ———. 2009. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (phPT1) during Petunia corolla senescence. Journal of Experimental Botany 60(7): 2179–2190.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, W. C., S. B. Berman, I. Ivanovska, E. A. Jonas, S. J. Lee, Y. Chen, L. K. Kaczmarek, F. Pineda & J. M. Hardwick. 2006. Mitochondrial factors with dual roles in death and survival. Oncogene 25: 4697–4705.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A. K. 2005. Plant Proteases- an appetite for destruction. Physiologia Plantarum 123: 359–361.

    Article  CAS  Google Scholar 

  • Coimbra, S., L. Tarrao & I. Abreu. 2004. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiology and Biochemistry 42: 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Cornish, E. C., J. M. Petitt, I. Boning & A. E. Clarce. 1987. Developmentally controlled expression of a gene associated with self incompatibility in Nicotiana alata. Nature 326: 99–102.

    Article  CAS  Google Scholar 

  • Courtney, S. E., C. C. Rider & A. D. Stead. 1993. Ubiquitination of proteins during flower development and senescence. Pp 285–303. In: N. H. Baltey, H. G. Dickenson, & A. M. Hetherington (eds). Post-translational Modifications in Plants. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • ———, ——— & ———. 1994. Changes in protein ubiquitination and the expression of ubiquitin-encoding transcripts in daylily petals during floral development and senescence. Physiologia Plantarum 91: 196–204.

    Article  CAS  Google Scholar 

  • Damboldt, J. & W. Zimmerman. 1965. Helleborus. Pp. 91–107. In: G. Hegi (ed.) Illustrierte Flora von Mittel-Europa, ed. 3, 3: 91–107. Munchen: Carl Hanser, Verlag.

  • Delorme, V. G. R., P. F. Mc Cabe, D. J. Kim & C. J. Leaver. 2000. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiology 123: 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Diekman, J. 1997. Molecular mechanisms of ethylene regulation of gene transcription. Plant Physiology 82: 7–10.

    Google Scholar 

  • Doelling, J. H., J. M. Walker, E. M. Friedman, A. R. Thompson & R. D. Vierstra. 2002. The APG8/12- activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. Journal of Biological Chemistry 277: 33105–33114.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez, F. & F. J. Cejudo. 2006. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochemical Journal 397: 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Eason, J. R. 2006. Molecular and genetic aspects of flower senescence. Steward Postharvest Reviews 2: 1–7.

    Google Scholar 

  • ———, J. W. Johnston, L. A. de Vré, B. K. Sinclair & G. A. King. 2000. Amino-acid metabolism in senescing Sandersonia aurantiaca flowers: cloning and characterization of asparagine synthetase and glutamine synthetase cDNAs. Australian Journal of Plant Physiology 27: 389–396.

    CAS  Google Scholar 

  • ———, D. J. Ryan, T. T. Pinkney & E. M. ÒDonoghue. 2002. Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Functional Plant Biology 29: 1055–1064.

    Article  CAS  Google Scholar 

  • Eisinger, W. 1977. Role of cytokinins in carnation flower senescence. Plant Physiology 59: 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. T. & R. L. Malmberg. 1989. Do polyamines have a role in plant development? BioScience 33: 382–388.

    Google Scholar 

  • Evans, A. C., G. K. Burge, R. P. Littlejohn, M. H. Douclas, R. A. Bicknell & R. E. Lill. 2002. Mount Cook lily (Ranunculus lyallii) – a potential cut flower? Newzealand Journal of Crop and Horticultural Science 30: 69–78.

    Article  Google Scholar 

  • Eze, J. M. O., S. Mayak, J. E. Thompson & E. B. Dumbroff. 1986. Senescence of cut carnation flowers: temporal and physiological relationship among water status, ethylene, abscisic acid and membrane permeability. Physiologia Plantarum 68: 323–328.

    Article  CAS  Google Scholar 

  • Farage-Barhom, S., S. Burd, L. Sonego, R. Perl-Treves & A. Lers. 2008. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. Journal of Experimental Botany 59: 3247–3258.

    Article  PubMed  CAS  Google Scholar 

  • Feller, U. & M. Keist. 1986. Senescence and metabolism in annual plants. Pp 219–234. In: H. Lambers, J. J. Neeterson, & I. Stulen (eds). Fundamental Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Finger, F. L., T. F. Carneiro & J. G. Barbosa. 2004. Post-harvest senescence of inflorescencias of esporinha (Consolida ajacis). Brasilia 39(6): 533–537.

    Google Scholar 

  • Fischer, A., R. Brouquisse & P. Raymond. 1998. Influence of senescence and of carbohydrate levels on the pattern of proteases in purple nutsedge (Cyperus rotundus). Physiologia Plantarum 102: 385–395.

    Article  CAS  Google Scholar 

  • Fujino, D. W., M. S. Reid & S. F. Yang. 1980. Effects of aminooxyacetic acid on postharvest characteristics of carnation. Acta Horticulturae 113: 59–64.

    Google Scholar 

  • Galston, A. W. & R. Kaur-Sawhney. 1990. Polyamines in plant physiology. Plant Physiology 94: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Granell, A., M. Cercos & J. Carbonell. 1998. Plant cysteine proteinases in germination and senescence. Pp 578–583. In: A. J. Barrett, N. D. Rawlings, & J. F. Woessner (eds). The Handbook of Proteolytic Enzymes. London Academic Press, San Diego.

    Google Scholar 

  • Grbic, V. & A. Bleecker. 1995. Ethylene regulates the timing of leaf senescence in Arabidopsis. The Plant Journal 8: 595–602.

    Article  CAS  Google Scholar 

  • Green, O. R. 1998. Apoptotic pathways: the roads to ruin. Cell 94: 695–698.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero, C., M. de la Calle, M. S. Reid & V. Valpuesta. 1998. Analysis of the expression of two thiol protease genes from daylily (Hemerocallis) during flower senescence. Plant Molecular Biology 36: 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Gul, F., I. Tahir & S. M. Sultan. 2005. Effect of some polyamines and protein synthesis inhibitors on flower senescence in Petunia hybrida Vilm. cv. Tint cascade. Oriental Science 10: 117–122.

    Google Scholar 

  • Gulzar, S. 2003. Studies on Postharvest Handling and Vase Life in Some Select Ornamental Flowers. M. Phil. Thesis, University of Kashmir, India.

  • Hail, N., B. Z. Carter, M. Konopleva & M. Andreeff. 2006. Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11: 889–904.

    Article  PubMed  Google Scholar 

  • Halevy, A. H. & S. Mayak. 1979. Senescence and postharvest physiology of cut flowers. Part I. Horticultural Reviews 1: 204–236.

    CAS  Google Scholar 

  • ——— & ———. 1981. Senescence and postharvest physiology of cut flowers- Part II. Horticultural Reviews 3: 59–143.

    CAS  Google Scholar 

  • Hall, J. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka, H., T. Noda, Y. Shirano, T. Kato, H. Hayashi, D. Shibata, S. Tabata & Y. Ohsumi. 2002. Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology 129: 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai, N., M. Kuroyanagi, M. Nishimura & I. Hara-Nishimura. 2006. A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11: 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Have, A. T. & E. J. Woltering. 1997. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Molecular Biology 34: 89–97.

    Article  PubMed  Google Scholar 

  • Hensel, L., V. Grbic, D. Baumgartner & A. B. Bleecker. 1993. Development and age-related processes that influences the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5: 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Henskens, J. A. M., G. J. A. Rouwendal, A. T. Have & E. J. Woltering. 1994. Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes. Plant Molecular Biology 26: 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Hew, C. S., S. C. Tan, T. Y. Chin & T. K. Ong. 1989. Influence of ethylene on enzyme activities and mobilization of materials in pollinated Arachnis orchid flowers. Journal of Plant Growth Regulation 8: 121–130.

    Article  CAS  Google Scholar 

  • Himelblau, E. & R. M. Amasino. 2001. Nutrient remobilization from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology 158: 1317–1323.

    Article  CAS  Google Scholar 

  • Hoeberichts, F. A., A. J. de Jong & E. J. Woltering. 2005. Apoptotic-like cell death marks the early stages of gypsophila (Gypsophila paniculata) petal senescence. Postharvest Biology and Technology 35: 229–236.

    Article  CAS  Google Scholar 

  • ———, W. G. van Doorn, O. Vorst, R. D. Hall & M. F. van Wordragen. 2007. Sucrose prevents upregulation of senescence-associated genes in carnation petals. Journal of Experimental Botany 58(11): 2873–2885.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, F. A. & R. Weges. 1986. Lack of control by early pistillate ethylene of the accelerated wilting in Petunia hybrida flowers. Plant Physiology 80: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y., T.-W. Wang, K. A. Hudak, F. Schada, C. D. Froese & J. E. Thompson. 2000. An ethylene-induced cDNA encoding like a lipase expressed at the onset of senescence. Proceedings of National Academy of Science USA 97: 8717–8722.

    Article  CAS  Google Scholar 

  • Hopkins, M., C. Taylor, Z. Liu, F. Ma, L. Mc Namara, T. W. Wang & J. E. Thompson. 2007. Regulation and execution of molecular disassembly and catabolism during senescence. New Phytologist 175: 201–214.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, D. A., B. C. Steele & M. S. Reid. 2002. Identification of genes associated with perianth senescence in daffodil (Narcissus Pseudonarcissus L. “Dutch master”). Plant Science 163: 13–21.

    Article  CAS  Google Scholar 

  • ———, A. Ferranti, P. Vernieri & M. S. Reid. 2004. Role of abscisic acid in perianth senescence of daffodil (Narcissus Pseudonarcissus “Dutch master”). Physiologia Plantarum 121: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura, W. H., T. Yamada, S. Yoshioka, U. K. Pun, K. Tanase & H. Shimizu-Yumoto. 2009. Ethylene regulates programmed cell death (PCD) associated with petal senescence incarnation flowers. Acta Horticulturae 847: 185–190.

  • Jones, M. L. 2004. Changes in gene expression during senescence. Pp 51–72. In: L. D. Noodén (ed). Plant Cell Death Processes. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Jones, M. 2008. Ethylene signalling is required for pollination-accelerated senescence in Petunia. Plant Science 175: 190–196.

    Article  CAS  Google Scholar 

  • Jones, M. L. & W. R. Woosdson. 1999. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiology 119: 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M., P. B. Larsen & W. R. Woodson. 1995. Ethylene regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Molecular Biology 28: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M. L., G. S. Chaffin, J. R. Eason & D. G. Clark. 2005. Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. Journal of Experimental Botany 56(420): 2733–2744.

    Article  PubMed  CAS  Google Scholar 

  • Kamachi, K., T. Yamaya, T. Hayakawa, T. Mae & K. Ojima. 1992. Changes in cytosolic glutamine synthase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiology 98: 1323–1329.

    Article  PubMed  CAS  Google Scholar 

  • Kellogy, E. W. & I. Fridovich. 1975. Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. Journal of Biological Chemistry 250: 8812–8817.

    Google Scholar 

  • Kende, H. 1993. Ethylene biosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology 44: 283–307.

    Article  CAS  Google Scholar 

  • ——— & B. Baumgartner. 1974. Regulation of aging in flowers of Ipomoea tricolor by ethylene. Planta 116: 279–289.

    Article  CAS  Google Scholar 

  • Ketsa, S. & A. Rugkong. 2000. Ethylene production senescence and ethylene sensitivity of Debdrobium ‘Pompador’ flowers following pollination. Journal of Horticultural Science and Biotechnology 75: 149–153.

    CAS  Google Scholar 

  • Kiningham, K. & E. Kasarskis. 1998. Antioxidant functions of Metallothioneins. Journal of Trace elements in Experimental Medicine 11: 219–226.

    Article  CAS  Google Scholar 

  • Kinoshita, T., K. Yamada, N. Hirawara, M. Kondo, M. Nishimura & I. Hara-Nishimura. 1999. Vacuolar processing enzyme is upregulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant Journal 19: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Kosugi, Y., K. Shibuya, N. Tsoruno, A. Mochizuki, T. Yoshicka, T. Hashiba & S. Satoh. 2000. Expression of genes responsible for ethylene production and wilting are differentially regulated in carnation (Dianthus caryophyllus L.) petals. Plant Science 158: 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Langston, B. J., S. Bai & M. L. Jones. 2005. Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias. Journal of Experimental Botany 56: 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Lara, M. E. B., M. C. G. Garcia, T. Fatima, R. Ehness, T. K. Lee & R. Proels. 2004. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16: 1276–1287.

    Article  Google Scholar 

  • Larsen, P. B., E. J. Woltering & W. R. Woodson. 1993. Ethylene and interorgan signalling in flowers following pollination. Pp 112–122. In: J. Schultz & I. Raskin (eds). Plant Signals in Interaction with Others. The American Society of Plant Physiologists, Rockville MD.

    Google Scholar 

  • Lawton, K., K. G. Raghothama, P. B. Goldsbrough & W. R. Woodson. 1990. Regulation of senescence-related gene expression in carnation flower petals by ethylene. Plant Physiology 93: 1370–1375.

    Article  PubMed  CAS  Google Scholar 

  • Lay-yee, M., A. D. Stead & M. S. Reid. 1992. Flower senescence in daylily (Hemerocallis). Physiologia Plantarum 86: 308–314.

    Article  CAS  Google Scholar 

  • Lee, M., S. H. Lee & K. Y. Park. 1997. Effects of spermine on ethylene biosynthesis in cut carnations (Dianthus caryophyllus L.) flowers during senescence. Journal of Plant Physiology 151: 68–73.

    CAS  Google Scholar 

  • Lerslerwong, L., S. Ketsa & W. G. van Doorn. 2009. Protein degradation and peptidase activity during petal senescence in Dendrobium cv. Khao sanan. Postharvest Biology and Technology 52(1): 84–90.

    Article  CAS  Google Scholar 

  • Leverentzs, M. K, C. Wagstaff, H. J. Rogers, A. D. Stead, U. Chanasut, H. Silkowski, B. Thomas, H. Weichert, I. Feussner & G. Griffiths. 2000. Characterization of novel lipoxygenase-independent senescence mechanism in Alstroemeria floral tissue. Plant Physiology 130: 273–283.

  • ———, ———, ———, ———, ———, ———, ———, ———, ——— & ———. 2002. Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiology 130: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Lordachescu, M. & S. Verlinden. 2005. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Imperial white Sim) during flower development and upon wounding, pollination and ethylene exposure. Journal of Experimental Botany 56: 2011–2018.

    Article  Google Scholar 

  • Mac Lean, D. E. & D. Dedolph. 1962. Effects of 6-benzylaminopurine on the keeping quality and respiration of glass house carnations. Horticultural Research 9: 26–36.

    Google Scholar 

  • Mahagamasekera, M. & M. David. 2001. Development of leucine aminopeptidase activity during daylily flower growth and senescence. Acta Physiologia Plantarum 23(6): 181–186.

    Article  CAS  Google Scholar 

  • Makrides, S. C. & J. Goldthwaite. 1981. Biochemical changes during bean leaf growth, maturity and senescence. Contents of DNA, polyribosomes, ribosomal RNA, protein and Chlorophyll. Journal of Experimental Botany 32: 725–735.

    Article  CAS  Google Scholar 

  • Matile, P. 1997. The vacuole and cell senescence. Advances in Botanical Research 25: 87–111.

    Article  CAS  Google Scholar 

  • ——— 2000. Biochemistry of Indian summer: physiology of autumnal leaf coloration. Experimental Gerontology 35: 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Matile, Ph & F. Winkenbach. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpurea). Journal of Experimental Botany 23: 759–771.

    Article  Google Scholar 

  • Mayak, S. & D. Dilley. 1976. Effect of sucrose on responses of cut carnation flowers to kinetin, ethylene and abscisic acid. Journal of American Society for Horticultural Science 101: 583–585.

    CAS  Google Scholar 

  • ——— & A. H. Halevy. 1972. Interrelationships of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiology 50: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • ——— & A. M. Kofranek. 1976. Altering the sensitivity of carnation flowers (Dianthus caryophyllus L.) to ethylene. Journal of American Society for Horticultural Science 101: 503–506.

    CAS  Google Scholar 

  • ———, R. L. Legge & J. E. Thompson. 1983. Superoxide radical production by microsomal membranes from senescing carnation flowers- an effect of membrane fluidity. Phytochemistry 22: 1375–1380.

    Article  CAS  Google Scholar 

  • Mazliak, P. 1981. Regulation of a court terme et a long terme de I activite des enzymes mambranaires par la temperature. Physiologia Vegetarian 19: 543–563.

    CAS  Google Scholar 

  • Mc Rae, D. G., J. E. Bakre & J. E. Thompson. 1982. Evidence for involvement of the superoxide radical in the conversion of 1-aminocyclopropane-1- carboxylic acid to ethylene by pea microsomal membranes. Plant Cell and Physiology 23: 375–383.

    CAS  Google Scholar 

  • Meyer, R. C., P. B. Goldsbrough & W. R. Woodson. 1991. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferase. Plant Molecular Biology 17: 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Michael, M. Z., K. W. Savin, S. C. Baudinette, M. W. Graham, S. F. Chandler, C. Y. Lu, C. Caesar, I. Gautrais, R. Young, C. D. Nugent, K. R. Stevenson, E. L. Ò. Conner, C. S. Cobett & E. C. Cornish. 1993. Cloning of ethylene biosynthetic genes involved in petal senescence of carnation and petunia, and their antisense expression in transgenic plants. Pp 298–303. In: J. C. Pech, A. Latche, & C. Balogue (eds). Cellular and Molecular Aspects of the Plant Hormone Ethylene. Kluwer Academic Publishers, Dordrecht-Netherlands.

    Google Scholar 

  • Muller, R., C. A. Owen, Z.-T. Xue, M. Welander & B. M. Sturnmann. 2002. Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence in response to ethylene. Journal of Experimental Botany 53: 1223–1225.

    Article  PubMed  CAS  Google Scholar 

  • Narumi, T., R. Sudo & S. Satoh. 2006. Cloning and characterization of a cDNA encoding a putative nuclease related to petal senescence in carnation (Dianthus caryophyllus L.) flowers. Journal of Japanese Society for. Horticultural Science 75(4): 323–327.

    Article  CAS  Google Scholar 

  • Nichols, R. 1966. Ethylene production during senescence of flowers. Journal of Horticultural Science 41: 279–290.

    CAS  Google Scholar 

  • ——— & L. C. Ho. 1975. An effect of ethylene on the distribution of 14C- sucrose from petals to other flower parts in the senescent cut inflorescence of Dianthus caryophyllus. Annals of Botany 39: 433–438.

    CAS  Google Scholar 

  • Noh, Y. S. & R. M. Amasino. 1999. Identification of a promoter region responsible for the senescence—specific expression of SAG12. Plant Molecular Biology 41: 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Noodén, L. D. & J. J. Guiamet. 1996. Genetic control of senescence and aging in plants. Pp 94–118. In: E. L. Schneider & J. W. Rowe (eds). Handbook of the Biology of Aging. Academy Press, Orlando.

    Google Scholar 

  • ——— & A. C. Leopold. 1988. Senescence and Ageing in Plants. Academic, California.

    Google Scholar 

  • ———, J. J. Guiamet & I. John. 1997. Senescence mechanisms. Physiologia Plantarum 101: 746–753.

    Article  Google Scholar 

  • Nowak, J. & H. Veen. 1982. Effects of silver thiosulphate on abscisic acid content in cut carnations as related to flower senescence. Plant Growth Regulation 1: 153–159.

    CAS  Google Scholar 

  • Nukui, H., S. Kudo, A. Yamashita & S. Satoh. 2004. Repressed ethylene production in the gynoecium of long-lasting flowers of carnation ‘White candle’: role of gynoecium in carnation flower senescence. Journal of Experimental Botany 5: 419–432.

    Google Scholar 

  • Òneill, S. D. 1997. Pollination regulation of flower development. Annual Reviews of Plant Physiology and Plant Molecular Biology 48: 547–574.

    Article  Google Scholar 

  • ———, J. A. Nadeau, X. S. Zhang, A. Q. Bui & A. H. Halevy. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419–432.

  • Onoue, T., M. Mikami, T. Yoshioka, T. Hashiba & S. Satoh. 2000. Characteristics of the inhibitory action of 1,1-dimethyl-4-(phenyl sulfonyl) semicarbazide (DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant Growth Regulation 80: 201–207.

    Article  Google Scholar 

  • Orzaez, D. & A. Granell. 1997a. DNA fragmentation is regulated by ethylene during petal senescence in Pisum sativum. The Plant journal 11: 137–144.

    Article  CAS  Google Scholar 

  • ——— & ———. 1997b. The plant homologue of the defender against apoptotic death gene is downregulated during senescence of flower petals. FEBS Letter 404: 275–278.

    Article  CAS  Google Scholar 

  • Pak, C. & W. G. van Doorn. 2005. Delay of Iris flower senescence by protease inhibitors. New Phytologist 165: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Paliyath, G. & M. J. Droillard. 1992. The mechanism of membrane deterioration and disassembly during senescence. Plant Physiology and Biochemistry 30: 789–812.

    CAS  Google Scholar 

  • ——— & J. E. Thompson. 1990. Evidence for early changes in membrane structure during postharvest development of cut carnation (Dianthus caryophyllus L.) flowers. New Phytologist 114: 555–562.

    Article  Google Scholar 

  • ———, D. V. Lynch & J. E. Thompson. 1987. Regulation of membrane phospholipid catabolism in senescing carnation flowers. Physiologia Plantarum 71: 503–511.

    Article  CAS  Google Scholar 

  • Panavas, T. & B. Rubinstein. 1998. Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Science 133: 125–138.

    Article  CAS  Google Scholar 

  • ———, A. Pikula, P. D. Reid, B. Rubinstein & E. L. Walker. 1999. Identification of senescence associated genes from daylily petals. Plant Molecular Biology 40: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • ———, R. Le Vangie, J. Mistler, P. D. Reid & B. Rubinstein. 2000. Activities of nucleases in senescing daylily petals. Plant Physiology and Biochemistry 38: 837–843.

    Article  CAS  Google Scholar 

  • Pandey, S., S. A. Ranade, P. K. Nagar & N. Kumar. 2000. Role of polyamines and ethylene as modulators of plant senescence. Journal of Biosciences 25: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. Y., A. Drory & W. R. Woodson. 1992. Molecular cloning of a 1-aminocyclopropane-1- carboxylate synthase from senescing carnation flower petals. Plant Molecular Biology 18: 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Paulin, A. 1986. Influence of exogenous sugars on the evolution of some senescence parameters of flowers. Acta Horticulturae 181: 183–193.

    Google Scholar 

  • ———, H. J. Droillard & J. M. Bureau. 1986. Effect of a free radical scavenger, 3,4,5-trichlorophenol, on ethylene production and on changes in lipids and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Physiologia Plantarum 67: 465–471.

    Article  CAS  Google Scholar 

  • Pech, J. C., A. Latché, C. Larrigaudiére & M. S. Reid. 1987. Control of early ethylene synthesis in pollinated Petunia flowers. Plant Physiology and Biochemistry 25: 413–437.

    Google Scholar 

  • Pérez-Amador, M., J. Carbonell, J. L. Navarro, T. Mortiz, M. H. Beale, M. J. Lewis & P. Hedden. 1996. N4-hexanoyl spermidine, a novel polyamine-related compound that accumulates during ovary and petal senescence in pea. Plant Physiology 110: 1177–1186.

    PubMed  Google Scholar 

  • Porat, R., A. Borochov & A. Halevy. 1993. Enhancement of Petunia and Dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regulation 13: 297–301.

    Article  CAS  Google Scholar 

  • ———, N. Reiss, R. Atzorn, A. H. Halevy & A. Borochov. 1995. Examination of the possible involvement of lipoxygenase and Jasmonates in pollination-induced senescence of Phalaenopsis and Dendrobium flowers. Physiologia Plantarum 94: 205–210.

    Article  CAS  Google Scholar 

  • Raghothama, K. G., K. A. Lawton, P. B. Goldsbrough & W. R. Woodson. 1991. Characterization of an ethylene regulated flower senescence-related gene from carnation. Plant Molecular Biology 17: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Reape, T. J. & P. F. Mc Cabe. 2008. Apoptotic like programmed cell death in plants. New Phytologist 189: 13–26.

    Article  CAS  Google Scholar 

  • Reid, M. S. 1989. The role of ethylene in petal senescence. Acta Horticulturae 261: 157–169.

    Google Scholar 

  • Roach, D. A. 1993. Evolutionary senescence in plants. Genetica 91: 53–64.

    Article  Google Scholar 

  • Rogers, H. J. 2006. Programmed cell death in floral organs: How and why do flowers die? Annals of Botany 97(3): 309–315.

    PubMed  CAS  Google Scholar 

  • Rojo, E., J. Zouhar, C. Carter, V. Kovalova & N. V. Raikhel. 2003. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proceedings of National Academy of Science USA 100: 7389–7394.

    Article  CAS  Google Scholar 

  • ———, R. Martin, C. Carter, J. Zouhar, S. Pan, J. Plotnikova, et al. 2004. VPE-gamma exhibits a caspases like activity that contributes to defense against pathogens. Current Biology 14: 1897–1906.

    Article  PubMed  CAS  Google Scholar 

  • Ronen, M. & S. Mayak. 1981. Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. Journal of Experimental Botany 32: 759–765.

    Article  CAS  Google Scholar 

  • Rottmann, W. H., G. F. Peter, P. W. Oeller, J. A. Keller, N. F. Shen, B. P. Nagy, L. P. Taylor, A. D. Campbell & A. Theologis. 1991. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by multigene family whose transcription is induced during fruit and floral senescence. Journal of Molecular Biology 222: 937–961.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, B. 2000. Regulation of cell death in flower petals. Plant Molecular Biology 44: 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Saks, Y. & J. van Staden. 1993. Evidence for the involvement of gibberellins in developmental phenomenon associated with carnation flower senescence. Plant Growth Regulation 12: 105–110.

    Article  CAS  Google Scholar 

  • ———, ——— & M. T. Smith. 1992. Effect of gibberellic acid on carnation flower senescence evidence that the delay of carnation flower senescence by gibberellic acid depends on the stage of flower development. Plant Growth Regulation 11: 45–51.

    Article  CAS  Google Scholar 

  • Salunkhe, D. K., N. R. Bhat & B. B. Desai. 1990. Postharvest Biotechnology of Flowers and Ornamental Plants. Springer Verlag, Berlin.

    Google Scholar 

  • Serek, M., E. C. Sisler & M. S. Reid. 1994. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants. Journal of American Society for Horticultural Science 119: 1230–1233.

    CAS  Google Scholar 

  • Setyadjit, A., D. E. Irwin, D. C. Joyce & D. H. Simons. 2006. Vase treatments containing gibberellic acid do not increase longevity of cut ‘Grevillea sylvia’ inflorescences. Australian Journal of Experimental Agriculture 46: 1535–1539.

    Article  CAS  Google Scholar 

  • Shahri, W. & I. Tahir. 2010. Effect of cycloheximide on postharvest performance in cut spikes of Consolida ajacis cv. Violet blue. Journal of Applied Horticulture. (in Press).

  • Shibuya, K., T. Yoshioka, T. Hashiba & S. Satoh. 2000. Role of gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. Journal of Experimental Botany 51: 2067–2073.

    Article  PubMed  CAS  Google Scholar 

  • ———, M. Nagata, N. Tanikawa, T. Yoshida, T. Hashiba & S. Satoh. 2002. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). Journal of Experimental Botany 53: 399–406.

    Article  PubMed  CAS  Google Scholar 

  • ———, K. G. Barry, J. A. Ciardi, H. M. Loucas, B. A. Underwood, S. Nourizadeh, J. R. Ecker, H. J. Klee & D. G. Clark. 2004. The central role of phEIN2 in ethylene responses throughout petal development in Petunia. Plant Physiology 136: 2900–2912.

    Article  PubMed  CAS  Google Scholar 

  • ———, T. Yamada, T. Suzuki, K. Shimizu & K. Ichimura. 2008. InPSR26, a putative membrane protein regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiology 149: 816–824.

    Article  PubMed  Google Scholar 

  • ———, ——— & K. Ichimura. 2009. Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy 5(4): 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Shillo, R., Y. Mor & A. H. Halevy. 1980. Prevention of flower drop in cut sweet peas and delphiniums. Hassade 61: 274–276.

    Google Scholar 

  • Shinitzky, M. 1984. Membrane fluidity and cellular functions. Pp 1–51. In: M. Shinitzky (ed). Physiology of Membrane Fluidity. CRC Press, Florida.

    Google Scholar 

  • Simon, E. W. 1974. Phospholipids and plant membrane permeability. New Phytologist 73: 377–420.

    Article  CAS  Google Scholar 

  • Sinvany-villallobo, G., O. Davydov, G. Ben-Ari, A. Zaltsman, A. Raskind & Z. Adam. 2004. Expression in multigene families: Analysis of chloroplast and mitochondrial proteases. Plant Physiology 135: 1336–1345.

    Article  Google Scholar 

  • Solomon, M., B. Belenghi, M. Delledonne, E. Menachem & A. Levine. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell 11: 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Song, W. C. & A. R. Brash. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253: 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Stead, A. D. 1992. Pollination induced flower senescence—A review. Plant Growth Regulation 11: 13–20.

    Article  CAS  Google Scholar 

  • ——— & K. G. Moore. 1983. Studies on flower longevity in Digitalis- the role of ethylene in corolla abscission. Planta 157: 15–21.

    Article  CAS  Google Scholar 

  • ———, W. G. van Doorn, M. L. Jones & C. Wagstaff. 2006. Flower senescence: fundamental and applied aspects. Pp 261–296. In: C. Ainsworth (ed). Flowering and its manipulation. Annual Plant Reviews. Blackwell Publishing, Oxford.

    Google Scholar 

  • Stein, J. C. & G. Hansen. 1999. Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiology 121: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, P. & B. Rubinstein. 1998. Characterization of proteolytic activity during senescence in daylilies. Physiologia Plantarum 104: 463–473.

    Article  CAS  Google Scholar 

  • Stimart, D. P., D. J. Brown & T. Solomos. 1983. Development of flowers and changes in carbon dioxide, ethylene, and various sugars of cut Zinnia elegans. Journal of American Society for Horticultural Science 108: 651–655.

    CAS  Google Scholar 

  • Sugawara, H., K. Shibuya, T. Yoshioka, T. Hashiba & S. Satoh. 2002. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? Journal of Experimental Botany 53: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Sultan, M. & S. Farooq. 1996. Some physiological changes associated with the development and senescence in flowers of daylily (Hemerocallis). Plant Physiology and Biochemistry 23(2): 205–208.

    Google Scholar 

  • ——— & ———. 1997. Effect of cycloheximide in some physiological changes associated with senescence of detached flowers of iris germanica L. Acta Physiologia Plantarum 19(1): 41–45.

    Article  CAS  Google Scholar 

  • Suttle, J. C. & H. Kende. 1980. Ethylene action and loss of membrane integrity during petal senescence in Tradescantia. Plant Physiology 65: 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Tassoni, A., P. Accettulli & N. Bagni. 2006. Exogenous spermidine delays senescence of Dianthus caryophyllus flowers. Plant Biosystematics 140(1): 107–114.

    Article  Google Scholar 

  • Taverner, E., D. S. Letham, J. Wang, E. Cornish & D. A. Wilkins. 1999. Influence of ethylene and cytokinin metabolism in relation to Petunia corolla senescence. Photochemistry 51: 341–347.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & ———. 2000. Inhibition of carnation petal inrolling by growth retardants and cytokinins. Australian Journal of Plant Physiology 27: 357–362.

    Article  CAS  Google Scholar 

  • Thompson, J. 1988. The molecular basis for membrane deterioration during senescence. Pp 51–83. In: L. D. Noodén & A. C. Leopold (eds). Senescence and Aging in Plants. Academic, Newyork.

    Google Scholar 

  • Thompson, A. R. & R. D. Vierstra. 2005. Autophagic recycling: Lessons from yeast help define the process in plants. Current Opinion in Plant Biology 8: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. E., C. D. Froese, E. Madey, M. D. Smith & Y. Hong. 1998. Lipid metabolism during plant senescence. Progress in Lipid Science 37: 119–141.

    Article  CAS  Google Scholar 

  • Tiemann, D. M., J. A. Ciardi, M. G. Taylor & H. J. Klee. 2001. Members of the tomato LeEIL gene family are functionally redundant and regulate ethylene responses throughout plant development. The Plant Journal 26: 47–58.

    Article  Google Scholar 

  • Tiwari, B. S., B. Belenghi & A. Levine. 2002. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition and programmed cell death. Plant Physiology 128: 1271–1280.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, S. K. & N. Tuteja. 2007. Integrated signalling in flower senescence. Plant Signalling and Behavior 2(6): 437–445.

    Article  Google Scholar 

  • ———, A. P. Singh, A. P. Sane & P. Nath. 2009. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. Journal of Experimental Botany 60(7): 2035–2044.

    Article  PubMed  CAS  Google Scholar 

  • Trobacher, C. P. 2009. Ethylene and Programmed Cell death in plants. Botany 87: 757–769.

    Article  CAS  Google Scholar 

  • Uemera, T., T. Ueda, R. T. Ohniwa, A. Nakano, K. Takeyasu & M. H. Sato. 2004. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-golgi network in plant cells. Cell Structure and Function 29: 49–65.

    Article  Google Scholar 

  • Valpuesta, V., N. E. Lange, C. Guerrero & M. S. Reid. 1995. Upregulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers. Plant Molecular Biology 28: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • van Altvorst, A. C. & A. G. Bovy. 1995. The role of ethylene in the senescence of carnation flowers: a review. Plant Growth Regulation 16: 43–53.

    Article  Google Scholar 

  • van Baarlen, P., E. J. Woltering, M. Staats & J. A. L. van Kan. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology 8: 41–54.

    Article  Google Scholar 

  • van der Graaff, E., R. Schwacke, A. Schneider, M. Desimoni, U.-I. Flugge & R. Kurze. 2006. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology 141: 776–792.

    Article  PubMed  CAS  Google Scholar 

  • van Doorn, W. G. 2001. Categories of petal senescence and abscission: a re-evaluation. Annals of Botany 87: 447–456.

    Article  CAS  Google Scholar 

  • ——— 2004. Is petal senescence due to sugar starvation? Plant Physiology 134: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • ——— & A. D. Stead. 1994. The physiology of petal senescence which is not initiated by ethylene. Pp 239–254. In: R. J. Scott & A. D. Stead (eds). Molecular and Cellular Aspects of Plant Reproduction. Cambridge University Press, Cambridge.

  • ——— & ———. 1997. Abscission of flower and floral parts. Journal of Experimental Botany 48(309): 821–837.

    Article  Google Scholar 

  • ——— & ———. 2005. Many ways to exit? Cell death categories in plants. Trends in Plant Science 10(3): 117–122.

    Article  PubMed  CAS  Google Scholar 

  • ——— & ———. 2008. Physiology and molecular biology of petal senescence. Journal of Experimental Botany 59(3): 453–480.

    Article  PubMed  CAS  Google Scholar 

  • ———, P. A. Balk, A. M. van Houwelingen, F. A. Hoeberichts, R. D. Hall, O. Vorst, et al. 2003. Gene expression during anthesis and senescence in Iris flowers. Plant Molecular Biology 53: 845–863.

    Article  PubMed  Google Scholar 

  • ———, A. Sinz & M. M. Thompson. 2004. Daffodil flowers delay senescence in cut Iris flowers. Phytochemistry 65: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • van Staden, J. 1995. Hormonal control of carnation flower senescence. Acta Horticulturae 405: 232–237.

    Google Scholar 

  • ——— & G. G. Dimalla. 1980. The effect of silver thiosulphate preservative on the physiology of cut carnations II: influence of endogenous cytokinins. Z. Pflanzen. Physiologia 99: 19–26.

    Google Scholar 

  • Veen, H. & S. C. van de Geijn. 1978. Mobility and ionic form of silver as related to longevity of cut carnations. Planta 140: 93–96.

    Article  CAS  Google Scholar 

  • Verlinden, S. 2003. Changes in mineral nutrient concentrations in Petunia corollas during development and senescence. Horticultural Science 38: 71–74.

    CAS  Google Scholar 

  • ———, J. Boatright & W. R. Woodson. 2002. Changes in ethylene responsiveness of senescence-related genes during carnation flower development. Physiologia Plantarum 116: 503–511.

    Article  CAS  Google Scholar 

  • Voleti, S. R., V. P. Singh, A. Arora, N. Singh & S. R. Kushwaha. 2000. Physiology of flower senescence in floriculture crops. Pp 423–439. In: A. Hemantaranjan (ed). Advances in Plant Physiology. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • Wagstaff, C., M. K. Leverentz, G. Griffiths, B. Thomas, U. Chanasut, A. D. Stead & H. J. Rogers. 2002. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. Journal of Experimental Botany 53(367): 233–240.

    Article  PubMed  CAS  Google Scholar 

  • ———, P. Malcolm, A. Rafiq, M. Leverentz, G. Griffiths, B. Thomas, A. Stead & H. Rogers. 2003. Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytologist 160: 49–59.

    Article  CAS  Google Scholar 

  • ———, U. Chanasut, F. J. M. Harren, L. Laarhoven, B. Thomas, H. J. Rogers & A. D. Stead. 2005. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis. Journal of Experimental Botany 56(413): 1007–1016.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. T., C. Y. Yang, Y. Chen, Y. Lin & J. F. Shaw. 2004. Characterization of senescence associated proteases in postharvest broccoli florets. Plant Physiology and Biochemistry 42: 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, L., S. Gan, B. Quirino & R. M. Amasino. 1998. A comparison of the expression of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology 37: 455–469.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, C. S. & A. H. Halevy. 1989. Ethylene sensitivity: the role of short chain fatty acids in pollination-induced senescence of Petunia hybrida flowers. Plant Growth Regulation 8: 41–54.

    CAS  Google Scholar 

  • Williams, M. H., T. A. Nell & J. E. Barrett. 1995. Investigation of proteins in petals of potted chrysanthemum as a potential indicator of longevity. Postharvest Biology and Technology 5: 91–100.

    Article  CAS  Google Scholar 

  • Winkenbach, F. 1970a. Zum Stoffwechsel der aufblÜhenden und welkenden korolle der prunkwinde Ipomoea purpurea I. Beziehungen Zwischen Gestaltwande I, Stoff transport, Atmung und Invertase aktivität. Berichte der schweizerischen botanischen Gesellschaft 80: 374–390.

    Google Scholar 

  • ——— 1970b. Zum Stoffwechsel der aufblÜhenden und welkenden korolle der prunkwinde Ipomoea purpurea II. Funktion und de nove synthese lysosomaler enzyme beim Welken. Berichte der schweizerischen botanischen Gesellschaft 80: 391–406.

    Google Scholar 

  • Woltering, E. J. & W. G. van Doorn. 1988. Role of ethylene in senescence of petals-morphological and taxonomic relationships. Journal of Experimental Botany 39: 1605–1616.

    Article  CAS  Google Scholar 

  • ———, M. van Hout, D. Somhorst & F. Harren. 1993. Roles of pollination and short-chain fatty acids in flower senescence. Plant Growth Regulation 12: 1–10.

    Article  CAS  Google Scholar 

  • ———, A. T. Have, P. B. Larsen & W. R. Woodson. 1994. Ethylene biosynthetic genes and interorgan signalling during flower senescence. Pp 285–307. In: R. J. Scott & A. D. Stead (eds). Molecular and Cellular Aspects of Plant Reproduction. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Woodson, W. R. 1994. Molecular biology of flower senescence in carnation. Pp 255–266. In: R. J. Scott & A. D. Stead (eds). Molecular and Cellular Aspects of Plant Reproduction. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • ——— & K. A. Lawton. 1988. Ethylene-induced gene expression in carnation petals. Plant Physiology 87: 498–503.

    Article  PubMed  CAS  Google Scholar 

  • ———, K. Y. Park, A. Drory, P. B. Larsen & H. Wang. 1992. Expression of ethylene biosynthesis pathway transcripts in senescing carnation flowers. Plant Physiology 99: 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., A. L. Contento & D. C. Bassham. 2005. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant Journal 42: 535–546.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y. & M. R. Hanson. 2000. Programmed cell death during pollination-induced senescence in Petunia. Plant Physiology 122: 1323–1333.

    Article  PubMed  CAS  Google Scholar 

  • ———, H. Ishida, D. Reisen & M. R. Hanson. 2006. Upregulation of tonoplast localized cytochrome P450 during petal senescence in Petunia inflata. BMC Plant Biology 6(8): 1471–1483.

    Google Scholar 

  • Xu, X., T. Gookin, C. Jiang & M. S. Reid. 2007. Genes associated with opening and senescence of Mirabilis jalapa flowers. Journal of Experimental Botany 58: 2193–2201.

    Article  PubMed  CAS  Google Scholar 

  • Xue, J., L. Yunhui, H. Tan, F. Yang, N. Ma & J. Gao. 2008. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. Journal of Experimental Botany 59(8): 2161–2169.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Y. Takatsu, M. Kasumi, T. Manabe, M. Hyashi, W. Marubashi & M. Niwa. 2001. Novel evaluation method of flower senescence in freesia (Freesia hybrida) based on apoptosis as an indicator. Plant Biotechnology 18: 215–218.

    Article  CAS  Google Scholar 

  • ———, ———, T. Manabe, M. Kasumi & W. Marubashi. 2003. Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Science 4: 213–221.

    Article  Google Scholar 

  • ———, K. Ichimura & W. G. van Doorn. 2006. DNA degradation and nuclear degradation during programmed cell death in Antirrhinum, Argyranthemum and Petunia. Journal of Experimental Botany 57(14): 3543–3552.

    Article  PubMed  CAS  Google Scholar 

  • ———, ———, M. Kanekatsu & W. G. van Doorn. 2009. Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell and Physiology 50(3): 610–625.

    Article  CAS  Google Scholar 

  • Yang, S. F. & N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35: 155–189.

    Article  CAS  Google Scholar 

  • Yang, J., X. Lui, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, D. P. Jones & X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome C from mitochondrion blocked. Science 275: 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., C. Wang, G. E. Hong, F. A. Hoeberichts & P. B. Visser. 2005. Programmed cell death in relation to petal senescence in ornamental plants. Journal of Integrative Plant Biology 47: 641–650.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. G. H. Dar, Head Department of Botany, for his cordial support. Waseem Shahri thanks University Grants Commission, India for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Shahri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahri, W., Tahir, I. Flower Senescence-Strategies and Some Associated Events. Bot. Rev. 77, 152–184 (2011). https://doi.org/10.1007/s12229-011-9063-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-011-9063-2

Keywords

Motsclés

Navigation