Skip to main content
Log in

Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Chromium pollution is increasing incessantly due to continuing industrialization. Of various oxidation states, Cr6+ is very toxic due to its carcinogenic and mutagenic nature. It also has deleterious effects on different microorganisms as well as on plants. Many species of bacteria thriving in the Cr6+-contaminated environments have evolved novel strategies to cope with Cr6+ toxicity. Generally, decreased uptake or exclusion of Cr6+ compounds through the membranes, biosorption, and the upregulation of genes associated with oxidative stress response are some of the resistance mechanisms in bacterial cells to overcome the Cr6+ stress. In addition, bacterial Cr6+ reduction into Cr3+ is also a mechanism of specific significance as it transforms toxic and mobile chromium derivatives into reduced species which are innocuous and immobile. Ecologically, the bacterial trait of reductive immobilization of Cr6+ derivatives is of great advantage in bioremediation. The present review is an effort to underline the bacterial resistance and reducing mechanisms to Cr6+ compounds with recent development in order to garner a broad perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R II, Matin A (2004a) Mechanisms of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    CAS  PubMed  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake R II, Keyhan M, Matin A (2004b) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effects of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100

    CAS  PubMed  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    CAS  PubMed  Google Scholar 

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Factors affecting the variation of microbial communities in different agro-ecosystems. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin Heidelberg, pp 301–324

    Google Scholar 

  • Alam MZ, Ahmad S (2012) Toxic chromate reduction by resistant and sensitive bacteria isolated from tannery effluent contaminated soil. Ann Microbiol 62:113–121

    CAS  Google Scholar 

  • Alam MZ, Ahmad S (2013) Multi-metal biosorption and bioaccumulation by Exiguobacterium sp. ZM-2. Ann Microbiol 63:1137–1146

    CAS  Google Scholar 

  • Alam MZ, Malik A (2008) Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J Basic Microbiol 48:416–420

    CAS  PubMed  Google Scholar 

  • Alvarez AH, Moreno-Sa’nchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  PubMed  Google Scholar 

  • Baral A, Engelken R, Stephens W, Farris J, Hannigan R (2006) Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries. Arch Environ Contam Toxicol 50:496–502

    CAS  PubMed  Google Scholar 

  • Barceloux D (1999) Chromium. Clinical Toxicol 37:173–194

    CAS  Google Scholar 

  • Batool R, Yrjälä K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22:547–554

    CAS  PubMed  Google Scholar 

  • Beller HR, Han R, Karaoz U, Lim HC, Brodie EL (2013) Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute Pelosinus sp. strain HCF1. Appl Environ Microbiol 79:63–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bencheikh-Latmani R, Obraztsova A, Mackey MR, Ellisman MH, Tebo BM (2007) Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ Sci Technol 41:214–220

    CAS  PubMed  Google Scholar 

  • Blake RC II, Choate DM, Bardhan S (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    CAS  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown SD, Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mole Cellular Proteomics 5:1054–1071

    CAS  Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. In: Nies D, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin, pp 407–419

    Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinants of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  PubMed  Google Scholar 

  • Chandhuru J, Harshitha S, Sujitha K, Kumar DJM (2012) Isolation of chromium resistant Bacillus sp. MRKV and reduction of hexavalent chromium potassium dichromate. J Acad Indus Res 1:317–319

    Google Scholar 

  • Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M (2002) Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl Microbiol Biotechnol 60:352–360

    CAS  PubMed  Google Scholar 

  • Chen J, Hao O (1998) Microbial chromium(VI) reduction. Critic Rev Environ Sci Technol 28:219–251

    Google Scholar 

  • Cheng Y, Yan F, Huang F, Chu W, Pan D, Chen Z, Zheng J, Yu M, Lin Z, Wu A (2006) Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ Sci Technol 44:6357–6363

    Google Scholar 

  • Cheung K, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodet Biodeg 59:8–15

    CAS  Google Scholar 

  • Cheung KH, Lai HY, Gu JD (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    CAS  Google Scholar 

  • Chirwa EMN, Molokwane PE (2011). Biological Cr(VI) reduction: microbial diversity, kinetics and biotechnological solutions to pollution. Sofo DA (ed) Biodiversity. InTech. Available from: http://www.intechopen.com/books/biodiversity/biological-cr-vi-reduction-microbialdiversity-kinetics-and-biotechnological-solutions-to-pollution

  • Chourey K, Thompson MR, Morrell-Falvey J, VerBerkmoes NC, Brown SD, Shah M, Zhou J, Doktycz M, Hettich RL, Thompson DK (2006) Global molecular and morphological effects of 24-h chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 72:6331–6344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Codd R, Dillon CT, Levina T, Lay PA (2001) Studies on the genotoxicity of chromium: from the test tube to the cell. Coordination Chem Rev 216:537–582

    Google Scholar 

  • Collard JM, Corbiser P, Diel SL, Dong Q, Jeanthon C, Mergeay M, Taghavi S, Vander LD, Wilmotte A, Wuertz S (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev 14:404–414

    Google Scholar 

  • Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR, Walden R, Abdo K, Pritchard JB, Fernando RA, Burka LT, Hooth MJ (2010) Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared to trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice. Toxicol Sci 118:368–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mate 146:270–277

    CAS  Google Scholar 

  • Das AP (2009) Bioreduction based bioremediation of hexavalent chromium Cr (VI) through potential indigenous microbes. Thesis, National Institute of Technology, Rourkela, Orissa, India

  • Daulton TL, Little BJ, Jones-Meehan J, Blom DA, Allard LF (2007) Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Acta 71:556–565

    CAS  Google Scholar 

  • Dey S, Paul AK (2013) Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden. Braz J Microbiol 44:307–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey SK, Jena PP, Kundu S (2009) Antioxidative efficiency of Triticum aestivum L., exposed to chromium stress. J Environ Biol 30:539–544

    CAS  PubMed  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Díaz-Pérez C, Cervantes C, Campos-García J, Julián-Sánchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274:6215–6227

    PubMed  Google Scholar 

  • Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) Chromium is not an essential trace element for mammals: effects of a “low-chromium” diet. J Biol Inorg Chem 16:381–390

    Google Scholar 

  • Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester MD, Zhang YB, Berthomieu C, Van Der Lelie D, Matin A (2012) Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate. PLoS One. doi:10.1371/journal.pone.0036017

  • Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Environ Biol 31:877–882

    CAS  Google Scholar 

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843

    CAS  PubMed  Google Scholar 

  • Frederick TM, Taylor EA, Willis JL, Shultz MS, Woodruff PJ (2013) Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnol Lett 35:1291–1296

    CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Singh A (2012) Pentachloro phenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (1050): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res. doi:10.1007/s11356-012-1101-z

    Google Scholar 

  • Ge S, Zhou M, Dong X, Lu Y, Ge S (2012) Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4361-0

    Google Scholar 

  • Ghosh A, Singh A, Ramteke PW, Singh VP (2000) Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortus equi. Biochem Biophys Res Commun 272:6–11

    CAS  PubMed  Google Scholar 

  • Gonzalez CF, Ackerley DF, Park CH, Matin A (2003) A soluble flavoprotein contributes to chromate reduction and tolerance in Pseudomonas putida. Acta Biotechnol 23:233–239

    CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    CAS  PubMed  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    CAS  PubMed  Google Scholar 

  • He M, Li X, Guo L, Miller SJ, Rensing C, Wang G (2010) characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 10:1–10

    Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim ASS, Elbadawi YB, El-Tayeb MA, Al-Salamah AA (2012a) Hexavalent chromium reduction by novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr9a. African J Biotechnol 11:3832–3841

    CAS  Google Scholar 

  • Ibrahim AS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA, Antranikian G (2012b) Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr(VI) reductase. Extremophiles 16:659–668

    CAS  PubMed  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51:76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayalakshmi R, Rao CSVRC (2012) Isolation, screening and molecular characterization of chromium reducing Cr (VI) Pseudomonas species. J Chem Bio Phy Sci Section B 3:297–304

    Google Scholar 

  • Jiménez-Mejía R, Campos-García J, Cervantes C (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeroginosa. FEMS Microbiol Lett 262:178–184

    PubMed  Google Scholar 

  • Jin H, Zhang Y, Buchko GW, Varnum SM, Robinson H, Squier TC, Long PE (2012) Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PLoS One. doi:10.1371/journal.pone.0042432

    Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N, Grobe C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    CAS  PubMed  Google Scholar 

  • Kamala-Kannan S, Lee KJ (2008) Metal tolerance and antibiotic resistance of Bacillus species isolated from Sunchon Bay sediments, South Korea. Biogeosciences 7:149–152

    CAS  Google Scholar 

  • Kavita B, Keharia H (2012) Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3. Biotech 2:79–87

    Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Appl Environ Microbiol 60:726–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe KL, Straube W, Little B, Jones-Meehan J (2003) Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis: effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol 23:161–178

    CAS  Google Scholar 

  • Lu Z, Ouyang X, Zhang W, Lu X (2013) Isolation of Cr(VI) resistant bacteria and exploration of Cr(VI) removal mechanism of strain n-9. Appl Mechanics Mate 295–298:74–77

    Google Scholar 

  • Mahmood S, Khalid A, Mahmood T, Arshad M, Ahmad R (2012) Potential of newly isolated bacterial strains for simultaneous removal of hexavalent chromium and reactive black-5 azo dye from tannery effluent. J Chem Technol Biotechnol. doi:10.1002/jctb.3994

    Google Scholar 

  • MAK (2012) Chromium and its compounds [MAK Value Documentation, 1992]. The MAK collection for occupational health and safety. pp 102–122

  • Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:1517–1521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazoch J, Tesařík R, Sedláček V, Kučera I, Turánek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    CAS  PubMed  Google Scholar 

  • Miranda AT, Gonzalez MV, Gonzalez G, Vargas E, Campos-Garcia J, Cervantes C (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutation Res 578:202–209

    CAS  PubMed  Google Scholar 

  • Mondaca MA, Gonzalez CL, Zaror CA (1998) Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida KT2441. Lett Appl Microbiol 26:367–371

    CAS  Google Scholar 

  • Mondaca MA, Campos V, Moraga R, Zaror CA (2002) Chromate reduction in Serratia marcescens isolated from tannery effluent and potential application for bioremediation of chromate pollution. Sci World J 2:972–977

    CAS  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24:401–410

    CAS  PubMed  Google Scholar 

  • Murugavelh S, Mohanty K (2013) Bioreduction of chromate by immobilized cells of Halomonas sp. Int J Energy Environ 4:349–356

    CAS  Google Scholar 

  • Narayani M, Shetty KV (2012) Characteristics of a novel Acinetobacter sp. and its kinetics in hexavalent chromium bioreduction. J Microbiol Biotechnol 22:690–698

    CAS  PubMed  Google Scholar 

  • Neal AL, Lowe K, Daulton TL, Jones-Meehan J, Little BJ (2002) Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction. Appl Surface Sci 202:150–159

    CAS  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 25:198–203

    CAS  Google Scholar 

  • Nguema PF, Luo Z (2012) Aerobic chromium(VI) reduction by chromium-resistant bacteria isolated from activated sludge. Ann Microbiol 62:41–47

    CAS  Google Scholar 

  • Ngwenya N, Chirwa EMN (2011) Biological removal of cationic fission products from nuclear wastewater. Water Sci Technol 63:124–128

    CAS  PubMed  Google Scholar 

  • Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chemico-Biol Interac 188:276–288

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  PubMed  Google Scholar 

  • Nies A, Nies DH, Silver S (1989) Cloning and expression of plasmid genes encoding resistance to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant form Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    CAS  PubMed  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opperman DJ, van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1097–1913

    Google Scholar 

  • Opperman DJ, van Heerden E (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280:210–218

    CAS  PubMed  Google Scholar 

  • Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pal A, Sumana Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell- free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    CAS  PubMed  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    CAS  PubMed  Google Scholar 

  • Plaper A, Jenko-Brinovec S, Premzl A, Kos J, Raspor P (2002) Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem Res Toxicol 15:943–949

    CAS  PubMed  Google Scholar 

  • Pulimi M, Jamwal S, Samuel J, Chandrasekaran N, Mukherjee A (2012) Enhancing the hexavalent chromium bioremediation potential of Acinetobacter junii VITSUKMW2 using statistical design experiments. J Microbiol Biotechnol 22:1767–1775

    CAS  PubMed  Google Scholar 

  • Puzon GF, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    CAS  PubMed  Google Scholar 

  • QuiIntana M, Curutchet G, Donati E (2001) Factors affecting chromium(VI) reduction by Thiobacillus ferroxidans. Biochem Engine J 9:11–15

    CAS  Google Scholar 

  • Ramírez-Díaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    PubMed  Google Scholar 

  • Rawat M, Rawat AP, Giri K, Rai JPN (2013) Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies. Environ Sci Pollut Res 20:5198–5211

    CAS  Google Scholar 

  • Rehman A, Zahoor A, Muneer B, Hasnain S (2008) Chromium tolerance and reduction potential of a Bacillus sp. ev3 isolated from metal contaminated wastewater. Bull Environ Contam Toxicol 81:25–29

    CAS  PubMed  Google Scholar 

  • Riaz S, Faisal M, Hasnain S (2010) Cicer arietinum growth promotion by Ochrobactrum intermedium and Bacillus cereus in the presence of CrCl3 and K2CrO4. Ann Microbiol 60:729–733

    CAS  Google Scholar 

  • Romanenko VI, Koren’kov VN (1977) A pure culture of bacteria utilizing chromate and dichromate as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46:414–417

    CAS  Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 86:847–852

    CAS  PubMed  Google Scholar 

  • Salamanca D, Strunk IN, Engesser KH (2013) Chromate reduction in anaerobic systems by bacterial strain Pseudomonas aeruginosa CRM100. Chemie Ingenieur Technik 85:1575–1580

    CAS  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44

    PubMed Central  PubMed  Google Scholar 

  • Sarangi A, Krishnant C (2008) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Biores Technol 99:4130–4137

    CAS  Google Scholar 

  • Sayel H, Bahafid W, Joutey NT, Derraz K, Benbrahim KF, Koraichi SI, Ghachtouli NE (2012) Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62:1269–1277

    CAS  Google Scholar 

  • Sedláček V, Kučera I (2010) Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch Microbiol 192:919–926

    PubMed  Google Scholar 

  • Sharma DC, Chatterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism. Plant Sci 111:145–151

    CAS  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi X, Dalal NS (1990a) NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276:189–191

    CAS  PubMed  Google Scholar 

  • Shi X, Dalal NS (1990b) One-electron reduction of chromate by NADPH-dependent glutathione reductase. J Inorg Biochem 40:1–12

    CAS  PubMed  Google Scholar 

  • Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y (2012) Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess Biosyst Eng 35:843–850

    CAS  PubMed  Google Scholar 

  • Silva B, Figueiredo H, Quintelas C, Neves IC, Tavares T (2012) Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodet Biodegrad 74:116–123

    CAS  Google Scholar 

  • Smirnova GF (2006) Use of immobilized cells of bacteria in the process of purification of waste water containing chlorates and chromates. Mikrobiol Z 68:62–68

    CAS  PubMed  Google Scholar 

  • Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Bioremed J 6:205–215

    CAS  Google Scholar 

  • Smrithi A, Usha K (2012) Isolation and characterization of chromium removing bacteria from tannery effluent disposal site. Int J Adv Biotechnol Res 3:644–652

    CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A (2013) In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res Int 20:1661–1674

    CAS  PubMed  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345

    CAS  Google Scholar 

  • Subramanian S, Sam S, Jayaraman G (2012) Hexavalent chromium reduction by metal resistant and halotolerant Planococcus maritimus VITP21. African J Microbiol Res 6:7339–7349

    CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Biores Technol 98:1541–1547

    CAS  Google Scholar 

  • Tharannum S, Krishnamurthy V, Mahmood R (2012) Characterization of chromium remediating bacterium Bacillus subtilis isolated from electroplating effluent. Int J Engin Res Appl (IJERA) 2:961–966

    Google Scholar 

  • Turpeinen R, Kairesalo T, Haggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper contaminated soils. FEMS Microbiol Ecol 47:39–50

    CAS  PubMed  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2002) Effect of ecological factors on conjugal transfer of chromium resistant plasmid in Escherichia coil isolated from tannery effluent. Appl Biochem Biotechnol 102(103):5–20

    PubMed  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    CAS  PubMed  Google Scholar 

  • Viamajala S, Smith WA, Sani RK, Apel WA, Petersen JN, Neal AL, Roberto FF, Newby DT, Peyton BM (2007) Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Biores Technol 98:612–622

    CAS  Google Scholar 

  • Viti C (2006) Response of microbial communities to different doses of chromate in soil microcosms. J Appl Soil Ecol 34:125–139

    Google Scholar 

  • Wang YT (2000) Microbial reduction of chromate. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society for Microbiology Press, Washington DC

    Google Scholar 

  • Ware G (2003) Reviews of environmental contamination and toxicology, 178, Springer.

  • Xu WH, Liu YG, Zeng GM, Li X, Zhang W (2013) Promoting influence of organic carbon source on chromate reduction by Bacillus sp. Adv Mate Res 610–613:1789–1794

    Google Scholar 

  • Yang J, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 25:1579–1587

    CAS  Google Scholar 

  • Ye J, Wang S, Leonard SS, Sun Y, Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V, Castranova V, Shi X (1999) Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem 274:34974–34980

    CAS  PubMed  Google Scholar 

  • Zenno S, Kobori T, Tanokura M, Saigo K (1998) Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution. J Bacteriol 180:422–425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Microbiol Res 163:616–623

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munees Ahemad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahemad, M. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59, 321–332 (2014). https://doi.org/10.1007/s12223-014-0304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0304-8

Keywords

Navigation