Skip to main content
Log in

Crosslinked Ionic Alginate and Cellulose-based Hydrogels for Photoresponsive Drug Release Systems

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, photosensitive alginate and cellulose-based hydrogels with interpenetrating polymer networks were successfully prepared from alginate, TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs) and polyacrylamide, crosslinked by both Fe3+ and N,N′-methylenebis-acrylamide. The obtained hydrogels showed a clear relationship between the mechanical properties and the content of the TEMPO-CNFs. The results indicated that the mechanical properties of crosslinked hydrogels were enhanced with the mass ratio of TEMPO-CNFs and alginate increased from 1/2 to 2. Moreover, the crosslinked ionic alginate and cellulose-based hydrogels with various TEMPO-CNFs contents exhibited an interconnected porous morphology with an average pore size of ca. 130 µm, and demonstrated an increased cumulative release amount of BSA drugs under the ultraviolet irradiation. This study demonstrated that the as-prepared photoresponsive hydrogels would have a potential application as local drug release systems for wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Toh and X. J. Loh, Mater. Sci. Eng. C, 45, 690 (2014).

    Article  CAS  Google Scholar 

  2. F. F. Azhar, E. Shahbazpour, and A. Olad, Fiber. Polym., 18, 416 (2017).

    Article  CAS  Google Scholar 

  3. S. Van Vlierberghe, P. Dubruel, and E. Schacht, Biomacromolecules, 12, 1387 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. C. K. Kuo and P. X. Ma, Biomaterials, 22, 511 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. H. Chen, X. Xing, H. Tan, Y. Jia, T. Zhou, Y. Chen, Z. Ling, and X. Hu, Mater. Sci. Eng. C, 70, 287 (2017).

    Article  CAS  Google Scholar 

  6. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater, 21, 3307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W. J. Zheng, N. An, J. H. Yang, J. Zhou, and Y. M. Chen, ACS Appl. Mater. Interfaces, 7, 1758 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. C. J. Carling, M. L. Viger, V. A. N. Huu, A. V. Garcia, and A. Almutairi, Chem. Sci., 6, 335 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. R. P. Narayanan, G. Melman, N. J. Letourneau, N. L. Mendelson, and A. Melman, Biomacromolecules, 13, 2465 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. N. Lin, C. C. Bruzzese, and A. Dufresne, ACS Appl. Mater. Interfaces, 4, 4948 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. G. E. Giammanco and A. D. Ostrowski, Chem. Mater., 27, 4922 (2015).

    Article  CAS  Google Scholar 

  12. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. I. Machida-Sano, S. Ogawa, H. Ueda, Y. Kimura, N. Satoh, and H. Namiki, Int. J Biomater, 820513, 1 (2012).

    Article  CAS  Google Scholar 

  14. Z. Jin, G. R. Güven, V. Bocharova, J. Halámek, I. Tokarev, S. Minko, A. Melman, D. Mandler, and E. Katz, ACS Appl. Mater. Interfaces, 4, 466 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. I. Machida-Sano, Y. Matsuda, and H. Namiki, Biomed. Mater, 4, 025008 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. C. Y. Chiang and C. C. Chu, Carbohyd. Polym., 119, 18 (2015).

    Article  CAS  Google Scholar 

  17. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. E. J. Foster, R. J. Moon, U. R Agarwal, M. J. Bortner, J. Bras, S. Camarero-Espinosa, K. J. Chan, M. J. Clift, E. D. Cranston, and S. J. Eichhorn, Chem. Soc. Rev., 47, 2609 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. G. K. Tummala, T. Joffre, V. R. Lopes, A. Liszka, O. Buznyk, N. Ferraz, C. Persson, M. Griffith, and A. Mihranyan, ACS Biomater Sci. Eng., 2, 2072 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. G. K. Tummala, T. Joffre, R. Rojas, C. Persson, and A. Mihranyan, Soft Matter, 13, 3936 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. N. Li, W. Chen, G. X. Chen, and J. F. Tian, Carbohyd. Polym., 171, 77 (2017).

    Article  CAS  Google Scholar 

  22. J. Yang, F. Xu, and C. R. Han, Biomacromolecules, 18, 1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. N. E. Zander, H. Dong, J. Steele, and J. T. Grant, ACS Appl. Mater. Interfaces, 6, 18502 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. G. E. Giammanco, C. T. Sosnofsky, and A. D. Ostrowski, ACS Appl. Mater. Interfaces, 7, 3068 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. J. Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature, 489, 133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Lin, S. Ma, X. Wang, and F. Zhou, Adv. Mater, 27, 2054 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. H. J. Zhang, X. J. Pang, and Y. Qi, RSC Adv., 5, 89073 (2015).

    Google Scholar 

  28. M. David, W. Dale, W. Meredith, D. Pierre-Emile, N. Jaan, N. T. Christopher, and W. F. Curtis, Polym. Advan. Technol., 19, 647 (2008).

    Article  CAS  Google Scholar 

  29. P. Mukhopadhyay, K. Sarkar, S. Bhattacharya, A. Bhattacharyya, R. Mishra, and P. P. Kundu, Carbohyd. Polym., 112, 627 (2014).

    Article  CAS  Google Scholar 

  30. B. Kundu and S. C. Kundu, Biomaterials, 33, 7456 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. M. C. Darnell, J. Y. Sun, M. Mehta, C. Johnson, P. R. Arany, Z. Suo, and D. J. Mooney, Biomaterials, 34, 8042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Bio¬macromolecules, 8, 2485 (2007).

    Article  CAS  Google Scholar 

  33. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 162 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. D. H. Kim and D. C. Martin, Biomaterials, 27, 3031 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. X. Z. Zhang, D. Q. Wu, and C. C. Chu, Biomaterials, 25, 3793 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. K. Varaprasad, Y. M. Mohan, K. Vimala, and K. Mohana Raju, J. Appl. Polym. Sci., 121, 784 (2011).

    Article  CAS  Google Scholar 

  38. J. Yang and F. Xu, Biomacromolecules, 18, 2623 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. K. J. Henderson, T. C. Zhou, K. J. Otim, and K. R. Shull, Macromolecules, 43, 6193 (2010).

    Article  CAS  Google Scholar 

  40. A. O. Elzoghby, W. M. Samy, and N. A. Elgindy, J. Control. Release, 157, 168 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. P. Aslani and R. A. Kennedy, J. Control. Release, 42, 75 (1996).

    Article  CAS  Google Scholar 

  42. I. Bružauskaitė, D. Bironaitė, E. Bagdonas, and E. Bernotienė, Cytotechnology, 68, 355 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. S. P. Miguel, M. P. Ribeiro, H. Brancal, P. Coutinho, and I. J. Correia, Carbohyd. Polym., 111, 366 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Zhou or E. Johan Foster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Wu, S., Rader, C. et al. Crosslinked Ionic Alginate and Cellulose-based Hydrogels for Photoresponsive Drug Release Systems. Fibers Polym 21, 45–54 (2020). https://doi.org/10.1007/s12221-020-9418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9418-6

Keywords

Navigation