Skip to main content
Log in

Ultra-High Molecular Weight Polyethylene Fibers/Epoxy Composites: Effect of Fiber Treatment on Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The properties of ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced epoxy resin composites were studied and the effects of the fiber surface treatment were investigated. The results showed that the surface treatment increased the roughness, O-containing groups (especially -OH groups), crystallinity and improved the wettability of UHMWPE fibers. The impact strength of the treated UHMWPE fibers/epoxy composites reached the maximum of 92.6 kJ/m2, which was higher than that of pure epoxy and as-received fiber composites. The tensile strength of both as-received and treated fiber composites showed lower than the pure epoxy. However, the tensile modulus was observably increased. The bending strength and modulus of the treated UHMWPE fibers/epoxy composites were 26.2 % and 26.0 %, higher than those of pure epoxy, respectively. The friction coefficients of the two types of composites were both increased. The dynamic mechanical analysis (DMA) results showed that Tg shifted toward higher temperatures and the reduction of tan δ peak of the treated UHMWPE fibers/epoxy composites indicated the adhesion of treated fiber with resin matrix was better than that of as-received fibers, which was in accord with the scanning electron microscope (SEM) analysis. The adding of the treated UHMWPE fibers to the epoxy matrix offered a stabilizing effect against the decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Kang, S. H. Oh, and J. S. Park, Fiber. Polym., 16, 1343 (2015).

    Article  CAS  Google Scholar 

  2. S. Jana and W. H. Zhong, J. Compos. Mater., 41, 2897 (2007).

    Article  CAS  Google Scholar 

  3. X. M. Fei, F. Q. Zhao, W. Wei, J. Luo, M. Q. Chen, and X. Y. Liu, Polymers-Basel, 8, 314 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  4. S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsiehab, Eur. Polym. J., 43, 996 (2007).

    Article  CAS  Google Scholar 

  5. S. I. Moon and J. Jang, Compos. Sci. Technol., 59, 487 (1999).

    Article  CAS  Google Scholar 

  6. J. Wang, G. Liang, W. Zhao, S. Lü, and Z. Zhang, Appl. Surf. Sci., 253, 668 (2006).

    Article  CAS  Google Scholar 

  7. S. Jana and W. H. Zhong, J. Compos. Mater, 41, 2897 (2007).

    Article  CAS  Google Scholar 

  8. J. Maity, C. Jacob, C. K. Das, S. Alam, and R. P. Sing, Polym. Test., 27, 581 (2008).

    Article  CAS  Google Scholar 

  9. A. Salehi-Khojin, J. J. Stone, and W. H. Zhong, J. Compos. Mater., 41, 1163 (2007).

    Article  CAS  Google Scholar 

  10. M. Štefecka, J. Ráhel’, M. Cernák, I. Hudec, M. Mikula, and M. Mazúr, J. Mater. Sci. Lett., 18, 2007 (1999).

    Article  Google Scholar 

  11. D. Delle Side, P. Alifano, V. Nassisi, A. Talà, S. M. Tredici, and L. Velardi, Lasers. Electro-optics. Europe., 1, 1 (2003).

    Google Scholar 

  12. A. M. Abdul-Kader, A. Turos, R. M. Radwan, and A. M. Kelany, Appl. Surf. Sci., 255, 7786 (2009).

    Article  CAS  Google Scholar 

  13. L. Vaisman, M. F. González, and G. Marom, Polymers-Basel., 44, 1229 (2005).

    Google Scholar 

  14. J. Yin and M. Li, Compos. Interface, 1, 10 (2018).

    Google Scholar 

  15. M. S. Silverstein, O, Breuer, and H. Dodiuk, J. Appl. Polym. Sci., 52, 1785 (2010).

    Article  Google Scholar 

  16. M. S. Silverstein and O. Breuer, Compos. Sci. Technol., 48, 151 (1993).

    Article  CAS  Google Scholar 

  17. W. W. Li, R. P. Li, C. Y. Li, Z. R. Chen, and L. Zhang, Polym. Compos., 38, 1215 (2017).

    Article  CAS  Google Scholar 

  18. W. W. Li, M. M. Huang, and R. L. Ma, Polym. Advan. Technol., 29, 1287 (2017).

    Article  CAS  Google Scholar 

  19. S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsieh, J. Appl. Polym. Sci., 104, 655 (2007).

    Article  CAS  Google Scholar 

  20. H. J. Liu, Y. N. Pei, D. Xie, X. R. Deng, Y. X. Leng, Y. Jin, and N. Huang, Appl. Surf. Sci., 256, 3941 (2010).

    Article  CAS  Google Scholar 

  21. W. W. Li, L. Meng, L. Wang, J. S. Mu, and Q. W. Pan, Surf. Interface Anal., 48, 1316 (2016).

    Article  CAS  Google Scholar 

  22. Y. L. Hsieh and X. P. Hu, J. Polym. Sci. B., 35, 623 (1997).

    Article  CAS  Google Scholar 

  23. R. Starikov and Schön, Comp. Struct., 55, 1 (2002).

    Article  Google Scholar 

  24. B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites”, pp.134–135, John Wiley & Sons, New York, 1990.

  25. J. Zhu and H. Q. Peng, Adv. Funct. Mater., 14, 643 (2004).

    Article  CAS  Google Scholar 

  26. V. Fiore, T. Scalici, G. Vitale, and A. Valenza, Mater. Des., 57, 456 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Feng, M., Liu, X. et al. Ultra-High Molecular Weight Polyethylene Fibers/Epoxy Composites: Effect of Fiber Treatment on Properties. Fibers Polym 20, 421–427 (2019). https://doi.org/10.1007/s12221-019-8704-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8704-7

Keywords

Navigation