Skip to main content
Log in

Bioinspired Fabric with Superhydrophilicity and Superoleophobicity for Efficient Oil/Water Separation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The cotton fabric was modified with dopamine methacrylamide (DMA) based on mussel-inspired reaction and polymerized with zwitterionic sulfobetaine methacrylate (SBMA) through free radical polymerization reaction. The poly(DMA-SBMA) contained not only key chemical constituents of dopamine hydrochloride, which strongly adsorbed to fabric substrates, but also hydrophilic groups, providing a hydrophilic surface for fabric due to its strong interaction with water via electrostatic interactions. The chemical structure, surface topography, and surface wettability of the fabric were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and contact angle experiments, respectively. The results showed that the water contact angle (WCA) of the treated fabric was ~0 °, whereas the underwater oil contact angle (OCA) was ~161 °, as compared to ~25 ° for the control one. It is expected that as-prepared fabrics could be applied in oil/water separation due to such special superhydrophilicity and superoleophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Seddighi and S. Hejazi, Mar. Pollut. Bull., 96, 286 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. S. Choi, T. Kwon, H. Im, D. Moon, D. Baek, M. Seol, J. Duarte, and Y. Choi, ACS Appl. Mater. Interfaces, 3, 4552 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. A. Al-Majed, A. Adebayo, and M. Hossain, J. Environ. Manage., 113, 213 (2012).

    Article  PubMed  Google Scholar 

  4. A. Kota, G. Kwon, W. Choi, J. Mabry, and A. Tuteja, Nat. Commun., 3, 1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, and A. Mayes, Nature, 452, 301 (2008).

    Article  CAS  Google Scholar 

  6. L. Gossen and L. Velichkina, Pet. Chem., 46, 67 (2006).

    Article  Google Scholar 

  7. M. Cheryan and N. Rajagopalan, J. Membr. Sci., 151, 13 (1998).

    Article  CAS  Google Scholar 

  8. T. Ichikawa, Colloids Surf. A, 302, 581 (2007).

    Article  CAS  Google Scholar 

  9. X. Meng, H. Zhan, B. Xi, X. Li, X. Zhou, Q. Deng, and L. Liang, J. Macromol. Sci. Part A, 54, 877 (2017).

    Article  CAS  Google Scholar 

  10. B. Tan, M. Tai, J. Juay, Z. Liu, and D. Sun, Sep. Purif. Technol., 156, 942 (2015).

    Article  CAS  Google Scholar 

  11. J. Song, S. Huang, Y. Lu, X. Bu, J. Mates, A. Ghosh, R. Ganguly, C. Carmalt, I. Parkin, and W. Xu, ACS Appl. Mater. Interfaces, 6, 19858 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. B. Cortese, D. Caschera, F. Federici, G. Ingo, and G. Gigli, J. Mater. Chem. A, 2, 6781 (2014).

    Article  CAS  Google Scholar 

  13. M. Lee, S. An, S. Latthe, C. Lee, S. Hong, and S. Yoon, ACS Appl. Mater. Interfaces, 5, 10597 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. M. Tenjimbayashi, K. Sasaki, T. Matsubayashi, J. Abe, K. Manabe, S. Nishioka, and S. Shiratori, Nanoscale, 8, 10922 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. T. Matsubayashi, M. Tenjimbayashi, M. Komine, K. Manabe, and S. Shiratori, Ind. Eng. Chem. Res., 56, 7080 (2017).

    Article  CAS  Google Scholar 

  16. W. Zhang, N. Liu, Y. Cao, Y. Chen, Q. Zhang, X. Lin, R. Qu, H. Li, and L. Feng, ACS Appl. Mater. Interfaces, 8, 21816 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Cao, N. Liu, C. Fu, K. Li, L. Tao, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 6, 2026 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. X. Gao, L. Xu, Z. Xue, L. Feng, J. Peng, Y. Wen, S. Wang, and X. Zhang, Adv. Mater., 26, 1771 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhu, F. Zhang, D. Wang, X. Pei, W. Zhang, and J. Jin, J. Mater. Chem. A, 1, 5758 (2013).

    Article  CAS  Google Scholar 

  20. H. Lee, S. Dellatore, W. Miller, and P. Messersmith, Science, 318, 426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Kang, I. You, W. Cho, H. Shon, T. Lee, I. Choi, J. Karp, and H. Lee, Angew. Chem. Int. Ed., 49, 9401 (2010).

    Article  CAS  Google Scholar 

  22. E. Danner, Y. Kan, M. Hammer, J. Israelachvili, and J. Waite, Biochem., 51, 6511 (2012).

    Article  CAS  Google Scholar 

  23. M. Shirgholami, M. Khalil-Abad, R. Khajavi, and M. Yazdanshenas, J. Colloid. Interface Sci., 359, 530 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. L. Liang, M. Su, C. Zheng, J. Li, H. Zhan, X. Li, and X. Meng, Fiber. Polym., 18, 2307 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Wang, C., Wang, H. et al. Bioinspired Fabric with Superhydrophilicity and Superoleophobicity for Efficient Oil/Water Separation. Fibers Polym 19, 1828–1834 (2018). https://doi.org/10.1007/s12221-018-8371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8371-0

Keywords

Navigation