Skip to main content
Log in

Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study aims to develop a new approach for fabricating hollow nanofibrous yarns by engineering a triple-layer structure (polyvinyl alcohol (PVA) multifilament core surrounded by a layer of PVA nanofibers and a polylactic acid (PLA) nanofiber outer layer). After fabrication of this 3-layer structure, the core portion was extracted, leaving the outer layer intact after dissolving the PVA nanofibers in water. To determine the optimum thickness of the outer layer, hollow nanofiber yarns with five different thicknesses were produced. A hollow nanofiber yarn was also produced using a common method to enable comparison of the methods. In the common method, a core sheath yarn consisting of a PVA multifilament core and a PLA nanofiber outer layer was fabricated, and a hollow yarn was produced by placing the core yarn in hot water. The results revealed facilitation of core extraction from the yarn body of the new 3-layer structure, which occurred due to rapid dissolution of the middle layer. The wicking behavior in the hollow yarn fabricated using the novel method followed the Locus Washburn equation and that of the hollow yarn produced from the core sheath yarn deviated from it. The results demonstrated that tensile properties of hollow nanofiber yarns were improved by increasing the thickness. Furthermore, hemolysis and cytotoxicity assays indicated that the fabricated hollow nanofibrous structure is non-toxic and blood compatible, indicating its potential for use in biomedical applications such as vascular scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Bazbouz, Ph.D. Dissertation, Heriot-Watt University, United Kingdom, 2009.

    Google Scholar 

  2. S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, World Scientific Publishing Co., Singapore, 2005.

    Book  Google Scholar 

  3. X. Li and C. Yao, National ACS Meeting, Boston, 2007.

    Google Scholar 

  4. F. Sun, C. Yao, T. Song, and X. Li, J. Text. Inst., 102, 633 (2011).

    Article  CAS  Google Scholar 

  5. J. Li, L. Tian, and Z. Pan, Polym. Eng. Sci., 54, 1618 (2014).

    Article  CAS  Google Scholar 

  6. F. Dabirian and S. Hosseini, Fibers Text. East. Eur., 17, 45 (2009).

    CAS  Google Scholar 

  7. H. Pan, L. Li, L. Hu, and X. Cui, Polym. J., 47, 4901 (2006).

    Article  CAS  Google Scholar 

  8. F. Hajiani, A. A. Jeddi, and A. Gharehaghaji, Fiber. Polym., 13, 244 (2012).

    Article  CAS  Google Scholar 

  9. N. Li, Q. Hui, H. Xue, and J. Xiong, Mater. Lett., 79, 245 (2012).

    Article  CAS  Google Scholar 

  10. A. Lotus, E. Bender, E. Evans, R. Ramsier, D. H. Reneker, and G. G. Chase, J. Appl. Phys., 103, 024910 (2008).

    Article  Google Scholar 

  11. F. Dabirian, S. A. H. Ravandi, J. P. Hinestroza, and R. A. Abuzade, Polym. Eng. Sci., 52, 1724 (2012).

    Article  CAS  Google Scholar 

  12. H. Maleki, A. Gharehaghaji, and P. Dijkstra, J. Appl. Polym. Sci., 127, 4086 (2013).

    Article  CAS  Google Scholar 

  13. F. Haghighat and S. A. H. Ravandi, Fiber. Polym., 15, 71 (2014).

    Article  CAS  Google Scholar 

  14. N. Kizildag and P. Yalcin, Smartex Conference, Egypt, 2011.

    Google Scholar 

  15. Y. Z. Cai, G. R. Zhang, L. L. Wang, Y. Z. Jiang, H. W. Ouyang, and X. H. Zou, J. Biomed. Mater. Res. A, 100, 1187 (2012).

    Article  Google Scholar 

  16. R. Vasita and D. S. Katti, Int. J. Nanomedicine, 1, 15 (2006).

    Article  CAS  Google Scholar 

  17. L. Javazmi, S. H. Ravandi, and A. Ghareaghaji, Fiber. Polym., 15, 954 (2014).

    Article  CAS  Google Scholar 

  18. X. Wang, B. Ding, and B. Li, Mater. Today, 16, 229 (2013).

    Article  CAS  Google Scholar 

  19. S. Jana and M. Zhang, J. Chem. Mater. B, 1, 2575 (2013).

    Article  CAS  Google Scholar 

  20. C. M. Vaz, S. van Tuijl, C. V. Bouten, and F. P. Baaijens, Acta Biomater., 1, 575 (2012).

    Article  Google Scholar 

  21. F. Montini-Ballarin, P. M. Frontini, and G. A. Abraham, SABI Conference, Argentina (2011).

    Google Scholar 

  22. A. Fakhrali, S. V. Ebadi, and A. A. Gharehaghaji, Fiber. Polym., 15, 2535 (2014).

    Article  CAS  Google Scholar 

  23. S. J. Najafi, A. A. Gharehaghaji, and S. M. Etrati, Mater. Des., 99, 328 (2016).

    Article  CAS  Google Scholar 

  24. F. Hajiani, A. Ghareaghaji, A. A. Jeddi, S. Amirshahi, and F. Mazaheri, Fiber. Polym., 15, 1966 (2014).

    Article  CAS  Google Scholar 

  25. H. Y. Tan, E. Widjaja, F. Boey, and S. C. Loo, J. Biomed. Mater. Res. B: Appl. Biomater., 91, 433 (2009).

    Article  Google Scholar 

  26. N. Golafshan, R. Rezahasani, M. T. Esfahani, M. Kharaziha, and S. N. Khorasani, Carbohydr. Polym., 176, 392 (2017).

    Article  CAS  Google Scholar 

  27. J. Yang, L. Zhu, X. Yan, D. Wei, G. Qin, B. Liu, S. Liu, and Q. Chen, RCS Adv., 6, 59131 (2016).

    CAS  Google Scholar 

  28. Z. Li, X. Zhao, L. Ye, P. Coates, F. Caton-Rose, and M. Martyn, J. Biomater. Appl., 28, 978 (2014).

    Article  Google Scholar 

  29. D. E. Henton, P. Gruber, J. Lunt, and J. Randall in “Natural Fibers, Biopolymers, and Biocomposites (A. K. Mohanty, M. Misra, and L. T. Drzal Eds.)”, Chap.16, pp.527-577, CRC Press LLC, Boca Ranton, FL, 2005.

  30. N. Nakayama and T. Hayashi, Polym. Degrad. Stab., 92, 1255 (2007).

    Article  CAS  Google Scholar 

  31. M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot, and S. Desobry, Compr. Rev. Food Sci. Food Saf., 9, 552 (2010).

    Article  CAS  Google Scholar 

  32. G. Kelly, Altern. Med. Rev., 11, 278 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Gharehaghaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banitaba, S.N., Amini, G., Gharehaghaji, A.A. et al. Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications. Fibers Polym 18, 2342–2348 (2017). https://doi.org/10.1007/s12221-017-1009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1009-9

Keywords

Navigation