Skip to main content
Log in

Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Optimization of mechanical properties is required in the applications of tissue-engineered scaffolds. Thermal annealing strategy is proposed to improve the mechanical properties of polyelectrolyte complex nanofiber membranes. The effects of annealing on the structural and mechanical properties of electrospun chitosan-gelatin (CG) nanofiber membranes were investigated using tensile tests, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Tensile test results showed that annealing processing at 90 °C produced 1.3-fold and 1.1-fold increase on Young’s modulus and tensile strength, respectively. By scanning electron microscopy (SEM) observation, it was found there was a formation of partial interfiber bonding when annealing temperature was elevated over the glass transition temperature (T g ) of CG nanofibers. FTIR results showed enhanced molecular interactions within fibers, suggesting that annealing treatment promoted the conjunction between chitosan and gelatin. In contrast, no detectable changes in crystallinity for CG nanofiber specimens were exhibited on XRD patterns following annealing treatment. In addition, thermal annealing induced the improvement in thermal stability, aqueous stability and swelling capacity. Therefore, annealing is proved to be an effective strategy for mechanical enhancement of polyelectrolyte complex nanofibrous scaffolds. The enhanced stiffness and strength is mainly attributed to the formation of interfiber bonding and strengthened molecular interactions between chitosan and gelatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. M. Baker, R. P. Shah, A. M. Silverstein, J. L. Esterhai, J. A. Burdick, and R. L. Mauck, Proc. Natl. Acad. Sci. USA, 109, 14176 (2012).

    Article  CAS  Google Scholar 

  2. C. I. Su, T. C. Lai, C. H. Lu, Y. S. Liu, and S. P. Wu, Fiber. Polym., 14, 542 (2013).

    Article  CAS  Google Scholar 

  3. M. E. Gomes, A. Ribeiro, P. Malafaya, R. Reis, and A. Cunha, Biomaterials, 22, 883 (2001).

    Article  CAS  Google Scholar 

  4. M. E. Gomes, J. Godinho, D. Tchalamov, A. Cunha, and R. Reis, Mater. Sci. Eng. C, 20, 19 (2002).

    Article  Google Scholar 

  5. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, P. Balasubramanian, G. Jin, A. Valipouri, and S. Ramakrishna, J. Nanosci. Nanotechnol., 13, 4656 (2013).

    Article  CAS  Google Scholar 

  6. F. Croisier, A. S. Duwez, C. Jérôme, A. Léonard, K. Van der Werf, P. Dijkstra, and M. Bennink, Acta Biomater., 8, 218 (2012).

    Article  CAS  Google Scholar 

  7. K. Leong, C. Cheah, and C. Chua, Biomaterials, 24, 2363 (2003).

    Article  CAS  Google Scholar 

  8. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  9. Z. Wang, N. Cai, D. Zhao, J. Xu, Q. Dai, Y. Xue, X. Luo, Y. Yang, and F. Yu, Polym. Compos., 34, 1735 (2013).

    Google Scholar 

  10. J. Xu, N. Cai, W. Xu, Y. Xue, Z. Wang, Q. Dai, and F. Yu, Nanotechnology, 24, 025701 (2013).

    Article  Google Scholar 

  11. J. Deitzel, J. Kleinmeyer, J. Hirvonen, and N. Beck Tan, Polymer, 42, 8163 (2001).

    Article  CAS  Google Scholar 

  12. Y. You, S. W. Lee, S. J. Lee, and W. H. Park, Mater. Lett., 60, 1331 (2006).

    Article  CAS  Google Scholar 

  13. M. Sadrjahani and S. H. Ravandi, Fiber. Polym., 14, 1276 (2013).

    Article  CAS  Google Scholar 

  14. J. Klein, Science, 250, 640 (1990).

    Article  CAS  Google Scholar 

  15. C. Gao, H. Ma, X. Liu, L. Yu, L. Chen, H. Liu, X. Li, and G. P. Simon, Polym. Eng. Sci., 53, 976 (2012).

    Article  Google Scholar 

  16. B. Babatope and D. H. Isaac, Polymer, 33, 1664 (1992).

    Article  CAS  Google Scholar 

  17. Y. Srithep, P. Nealey, and L. S. Turng, Polym. Eng. Sci., 53, 580 (2012).

    Article  Google Scholar 

  18. L. Huang, S. S. Manickam, and J. R. McCutcheon, J. Membrane Sci., 436, 213 (2013).

    Article  CAS  Google Scholar 

  19. R. J. Samuels, J. Polym. Sci. B, 19, 1081 (1981).

    CAS  Google Scholar 

  20. B. Smitha, S. Sridhar, and A. Khan, Macromolecules, 37, 2233 (2004).

    Article  CAS  Google Scholar 

  21. S. Haider, S. Y. Park, and S. H. Lee, Soft Matter., 4, 485 (2008).

    Article  CAS  Google Scholar 

  22. S. Ramaswamy, L. I. Clarke, and R. E. Gorga, Polymer, 52, 3183 (2011).

    Article  CAS  Google Scholar 

  23. S. J. Lee, S. H. Oh, J. Liu, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 1422 (2008).

    Article  CAS  Google Scholar 

  24. L. Li, R. Hashaikeh and H. A. Arafat, J. Membrane Sci., 436, 57 (2013).

    Article  CAS  Google Scholar 

  25. Z. Liu, X. Ge, Y. Lu, S. Dong, Y. Zhao, and M. Zeng, Food Hydrocolloids, 26, 311 (2012).

    Article  Google Scholar 

  26. S. Haider, W. A. Al Masry, N. Bukhari, and M. Javid, Polym. Eng. Sci., 50, 1887 (2010).

    Article  CAS  Google Scholar 

  27. J. Zawadzki and H. Kaczmarek, Carbohyd. Polym., 80, 394 (2010).

    Article  CAS  Google Scholar 

  28. T. Jiang, Z. Zhang, Y. Zhou, Y. Liu, Z. Wang, H. Tong, X. Shen, and Y. Wang, Biomacromolecules, 11, 1254 (2010).

    Article  CAS  Google Scholar 

  29. M. M. Daly and D. Knorr, Biotechnol. Progr., 4, 76 (1988).

    Article  CAS  Google Scholar 

  30. T. Hesketh, J. Van Bogart, and S. Cooper, Polym. Eng. Sci., 20, 190 (1980).

    Article  CAS  Google Scholar 

  31. G. Zhumadilova, A. Gazizov, L. Bimendina, and S. Kudaibergenov, Polymer, 42, 2985 (2001).

    Article  CAS  Google Scholar 

  32. S. Balaji, R. Kumar, R. Sripriya, P. Kakkar, D. V. Ramesh, P. Reddy, and P. Sehgal, Mater. Sci. Eng. C, 32, 975 (2012).

    Article  CAS  Google Scholar 

  33. X. Li, H. Xie, J. Lin, W. Xie, and X. Ma, Polym. Degrad. Stabil., 94, 1 (2009).

    Article  CAS  Google Scholar 

  34. I. I. Muhamad, L. S. Fen, N. H. Hui, and N. A. Mustapha, Carbohyd. Polym., 83, 1207 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faquan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cai, N., Dai, Q. et al. Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes. Fibers Polym 15, 1406–1413 (2014). https://doi.org/10.1007/s12221-014-1406-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1406-2

Keywords

Navigation