Skip to main content
Log in

Preparation and characterization of electro-conductive rotor yarn by in situ chemical polymerization of pyrrole

  • Communication
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This work describes a novel method for preparing electro-conductive rotor yarns by in situ oxidative chemical polymerization of pyrrole. The effects of different process parameters on electrical resistivity of the yarn were studied by using Box-Behnken response surface design. The concentration of monomer, polymerization time and polymerization temperature were found to influence the electrical resistivity of the yarn. It was observed that electrical resistivity of the yarn increased linearly with increase of measuring length of it. Whereas the effects of yarn twist and tensile strain found to had negative correlation with electrical resistivity of electro-conductive rotor yarns. Microscopic image analysis showed that there was uniform distribution of PPy polymer on the surface of cotton fibres and FTIR analysis depicted possible chemical interaction between polypyrrole and cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Harlin and M. Ferenets in “Intelligent Textiles and Clothing”, 1st ed. (H. Matilla), pp.217–236, Woodhead Publishing Limited, England and CRC Press LLC, 2006.

  2. R. Kiebooms, R. Menon, and K. Lee in “Handbook of Advanced Electronic and Photonic Materials and Devices” (H. S. Nalwa Ed.), Vol.8, pp.1–102, Conducting Polymers, Academic Press, UK, 2001.

  3. H. H. Kuhn, A. D. Child, and W. C. Kimbrell, Synthetic Metals, 71, 2139 (1995).

    Article  CAS  Google Scholar 

  4. E. Devaux, V. Koncar, B. Kim, C. Campagne, C. Roux, M. Rochery, and D. Saihi, Transactions of the Institute of Measurement and Control, 29, 355 (2007).

    Article  Google Scholar 

  5. D. Knittel and E. Schollmeyer, Synthetic Metals, 159, 1433 (2009).

    Article  CAS  Google Scholar 

  6. A. Schwarz, I. Kazani, L. Cuny, C. Hertleer, F. Ghekiere, G. D. Clercq, and L. V. Langenhove, Text. Res. J., 81, 1713 (2011).

    Article  CAS  Google Scholar 

  7. S. I. Kazani, L. Cuny, C. Hertleer, F. Ghekiere, G. D. Clercq, G. D. Mey, and L. V. Langenhove, Materials and Design, 32, 4247 (2011).

    Article  Google Scholar 

  8. S. Maiti, D. Das, and K. Sen, J. Appl. Polym. Sci., 123, 455 (2012).

    Article  CAS  Google Scholar 

  9. A. Kaynaka, S. S. Najar, and R. C. Foitzik, Synthetic Metals, 158, 1 (2008).

    Article  Google Scholar 

  10. A. Varesano, L. Dall’Acqua, and C. Tonin, Polym. Degrad. Stabil., 89, 125 (2005).

    Article  CAS  Google Scholar 

  11. L. Wang, T. Lin, X. Wang, and A. Kaynak, Fiber. Polym., 6, 259 (2005).

    Article  CAS  Google Scholar 

  12. A. Esfandiari, World Appl. Sci. J., 3, 470 (2008).

    Google Scholar 

  13. T. W. Shyr, J. W. Shie, and Y. E. Jhuang, Sensors, 11, 1693 (2011).

    Article  Google Scholar 

  14. A. Boschi, C. Arosio, I. Cucchi, F. Bertini, M. Catellani, and G. Freddi, Fiber. Polym., 9, 698 (2008).

    Article  CAS  Google Scholar 

  15. E. Romero, J. Molina, A. I. Río, J. Bonastre, and F. Cases, Text. Res. J., 81, 1427 (2011).

    Article  CAS  Google Scholar 

  16. D. Müller, C. R. Rambo, D. O. S. Recouvreux, L. M. Porto, and G. M. O. Barra, Synthetic Metals, 161, 107 (2011).

    Article  Google Scholar 

  17. J. H. Johns, J. Moraes, and T. Borrmann, Synthetic Metals, 153, 65 (2005).

    Article  Google Scholar 

  18. J. E. Booth, “Principle of Textile Testing”, 1st ed., pp.208–227, CBS Publishers & Distributors, New Delhi, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Maity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maity, S., Chatterjee, A. Preparation and characterization of electro-conductive rotor yarn by in situ chemical polymerization of pyrrole. Fibers Polym 14, 1407–1413 (2013). https://doi.org/10.1007/s12221-013-1407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1407-6

Keywords

Navigation