Skip to main content
Log in

Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10−15 S cm−1 (neat PVDF) to 7.1×10−7 S cm−1 of the PVDF composite with 10 wt% hybrid filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Li and S. L. C. Hsu, J. Phys. Chem. B, 114, 6825 (2010).

    Article  CAS  Google Scholar 

  2. A. P. Yu, P. Ramesh, X. B. Sun, E. Bekyarova, M. E. Itkis, and R. C. Haddon, Adv. Mater., 20, 4740 (2008).

    Article  CAS  Google Scholar 

  3. G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Compos. Part A-Appl. S., 37, 727 (2006).

    Article  Google Scholar 

  4. A. Bhattacharyya and M. Joshi, Fiber. Polym., 12, 734 (2011).

    Article  CAS  Google Scholar 

  5. E. H. Weber, M. L. Clingerman, and J. A. King, J. Appl. Polym. Sci., 88, 112 (2003).

    Article  CAS  Google Scholar 

  6. E. H. Weber, M. L. Clingerman, and J. A. King, J. Appl. Polym. Sci., 88, 123 (2003).

    Article  CAS  Google Scholar 

  7. Y. Shimazaki, F. Hojo, and Y. Takezawa, Appl. Phys. Lett., 92, 133309 (2008).

    Article  Google Scholar 

  8. Y. Shimazaki, F. Hojo, and Y. Takezawa, ACS Appl. Mater. Interfaces, 1, 225 (2009).

    Article  CAS  Google Scholar 

  9. P. Bujard, G. Kuhnlein, S. Ino, and T. Shiobara, IEEE Trans. Compon., Packag., Manuf. Technol., Part A, 17, 527 (1994).

    Article  CAS  Google Scholar 

  10. W. S. Lee and J. Yu, Diamond Relat. Mater., 14, 1647 (2005).

    Article  CAS  Google Scholar 

  11. T. L. Zhou, X. Wang, G. U. Mingyuan, and X. H. Liu, Polymer, 49, 4666 (2008).

    Article  CAS  Google Scholar 

  12. K. Yang and M. Y. Gu, Compos. Part A-Appl. S., 41, 215 (2010).

    Article  Google Scholar 

  13. W. Y. Zhou, C. F. Wang, T. Ai, K. Wu, F. J. Zhao, and H. Z. Gu, Compos. Part A-Appl. S., 40, 830 (2009).

    Article  Google Scholar 

  14. H. He, R. Fu, Y. Shen, Y. C. Han, and X. F. Song, Compos. Sci. Technol., 67, 2493 (2007).

    Article  CAS  Google Scholar 

  15. G. Pezzotti, I. Kamada, and S. Miki, J. Eur. Ceram. Soc., 20, 1197 (2000).

    Article  CAS  Google Scholar 

  16. Y. Xu, D. D. L. Chung, and C. Mroz, Compos. Part AAppl. S., 32, 1749 (2001).

    Article  Google Scholar 

  17. W. L. Wang, X. X. Yang, Y. T. Fang, J. Ding, and J. Y. Yan, Appl. Energy, 86, 1196 (2009).

    Article  CAS  Google Scholar 

  18. T. Terao, Y. Bando, M. Mitome, C. Y. Zhi, C. C. Tang, and D. Golberg, J. Phys. Chem. C, 113, 13605 (2009).

    Article  CAS  Google Scholar 

  19. K. C. Yung and H. Liem, J. Appl. Polym. Sci., 106, 3587 (2007).

    Article  CAS  Google Scholar 

  20. C. Y. Zhi, Y. Bando, T. Terao, C. C. Tang, H. Kuwahara, and D. Golberg, Adv. Funct. Mater., 19, 1857 (2009).

    Article  CAS  Google Scholar 

  21. Y. X. Zhang, X. Y. Hu, J. H. Zhao, K. Sheng, W. R. Cannon, X. H. Wang, and L. Fursin, IEEE, Trans. Component Packaging Tech., 32, 716 (2009).

    Article  CAS  Google Scholar 

  22. L. Wei, Z. Rongwei, and C. P. Wong, J. Electron. Mater., 39, 268 (2010).

    Article  Google Scholar 

  23. S. Ganguli, A. K. Roy, and D. P. Anderson, Carbon, 46, 806 (2008).

    Article  CAS  Google Scholar 

  24. Q. H. Mu and S. Y. Feng, Thermochim. Acta, 462, 70 (2007).

    Article  CAS  Google Scholar 

  25. W.-T. Hong and N.-H. Tai, Diamond Relat. Mater., 17, 1577 (2008).

    Article  CAS  Google Scholar 

  26. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, and K. Schulte, Polymer, 47, 2036 (2006).

    Article  CAS  Google Scholar 

  27. A. Chatterjee and B. Deopura, Fiber. Polym, 3, 134 (2002).

    Article  CAS  Google Scholar 

  28. P. Procter and J. Solc, IEEE Trans. Compon. Hybrids Manuf. Technol., 14, 708 (1991).

    Article  CAS  Google Scholar 

  29. M. Michael and L. Nguyen, Intersoc. Conf. Therm. Phenom. Electron. Syst., 246 (1992).

    Google Scholar 

  30. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Macromolecules, 42, 5251 (2009).

    Article  CAS  Google Scholar 

  31. S. Ansari and E. P. Giannelis, J. Polym. Sci., Pol. Phys., 47, 888 (2009).

    Article  CAS  Google Scholar 

  32. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme, and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008).

    Article  CAS  Google Scholar 

  33. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).

    Article  CAS  Google Scholar 

  34. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett., 92, 151911 (2008).

    Article  Google Scholar 

  35. B. Ameduri, Chem. Rev., 109, 6632 (2009).

    Article  CAS  Google Scholar 

  36. S. Lee and H. Cho, Fiber. Polym., 11, 1146 (2010).

    Article  CAS  Google Scholar 

  37. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  38. S. Park and R. S. Ruoff, Nat. Nanotechnol., 4, 217 (2009).

    Article  CAS  Google Scholar 

  39. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).

    Article  CAS  Google Scholar 

  40. O. Shenderova, T. Tyler, G. Cunningham, M. Ray, J. Walsh, M. Casulli, S. Hens, G. McGuire, V. Kuznetsov, and S. Lipa, Diamond Relat. Mater., 16, 1213 (2007).

    Article  CAS  Google Scholar 

  41. G. Q. Zhang, Y. P. Xia, H. Wang, Y. Tao, G. L. Tao, S. T. Tu, and H. P. Wu, J. Compos. Mater., 44, 963 (2010).

    Article  CAS  Google Scholar 

  42. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Qian, R. & Jiang, P. Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler. Fibers Polym 14, 1317–1323 (2013). https://doi.org/10.1007/s12221-013-1317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1317-7

Keywords

Navigation