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Abstract. Given any complex number a, we prove that there are infinitely

many simple roots of the equation ζ(s) = a with arbitrarily large imaginary

part. Besides, we give a heuristic interpretation of a certain regularity of the

graph of the curve t 7→ ζ( 1
2

+ it). Moreover, we show that the curve R 3 t 7→
(ζ( 1

2
+ it), ζ′( 1

2
+ it)) is not dense in C2.
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1. Introduction and statement of the main results

The Riemann zeta-function ζ(s) is of special interest in number theory and

complex analysis. The real zeros of ζ(s) are called trivial; they are located at

s = −2n, n ∈ N. All other zeros are called nontrivial; they lie in the critical

strip 0 < Re s < 1 and are known to be relevant in many questions concerning

the distribution of prime numbers. It is well-known that there are infinitely many

nontrivial zeros. More precisely, for the number N(T ) of nontrivial zeros ρ = β+iγ

satisfying 0 < γ ≤ T the asymptotical formula

N(T ) =
T

2π
log

T

2πe
+O(log T )

holds as T → ∞. Conrey [7] has shown that more than two fifths of the zeros lie

on the critical line Re s = 1
2 and are simple; this result has been slightly improved

by Bui, Conrey & Young [6]. The famous yet unproved Riemann hypothesis states

that all nontrivial zeros lie on the critical line and the simplicity hypothesis claims

that all (or at least almost all) zeros are simple. In this article we are concerned

with the general value-distribution. A famous open problem in this direction is the

question whether the values ζ(1
2 + it) for t ∈ R are dense in the complex plane.

The zeta-function has no exceptional values (in the meaning of Nevanlinna the-

ory) except infinity as was shown by Ye [29] (see also [25], Chapter 7). There

are remarkable quantitative results. For example, it was shown by Bohr & Jessen

[3] that log ζ(s) assumes any complex value infinitely often in any vertical strip

σ1 < Re s < σ2 satisfying 1
2 < σ1 < σ2 < 1, and that for fixed a 6= 0 the number of
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2 R. GARUNKŠTIS AND J. STEUDING

such roots of the equation ζ(s) = a with imaginary part bounded by T has linear

asymptotic growth as T →∞. For arbitrary complex a the roots of

ζ(s) = a

are called a-points and are denoted by ρa = βa + iγa. There is an a-point near

any trivial zero s = −2n for sufficiently large n and apart from these a-points

there are only finitely many other a-points in the half-plane σ ≤ 0 (see Lemma 6

below). The a-points with βa ≤ 0 are said to be trivial; all other a-points are called

nontrivial. For any fixed a, there exist left and right half-planes free of nontrivial

a-points (see formulas (12) and (20)). As in the case of zeros (a = 0) there is a

Riemann-von Mangoldt–type formula for the number Na(T ) of nontrivial a-points

with imaginary part γa satisfying 0 < γa ≤ T , namely, as T →∞,

(1) Na(T ) =
T

2π
log

T

2πeca
+O(log T )

with the constant ca = 1 if a 6= 1, and c1 = 2. This was first proved by Landau

[4]1 (see also [25], Chapter 7). We observe that these asymptotics are essentially

independent of a:

Na(T ) ∼ N(T ).

Levinson [19] proved that all but O(N(T )/ log log T ) of the a-points with imaginary

part in T < t < 2T lie in

(2) |Re s− 1
2 | <

(log log T )2

log T
,

and hence the a-points are clustered around the critical line. In the special case

of zeros this result was obtained by several mathematicians in the beginning of

the 20th century and was sometimes misleadingly interpreted as indicator for the

truth of the Riemann hypothesis. Levinson’s result was first proved by Landau [4]

under assumption of the truth of the Riemann hypothesis.

We turn to the value-distribution on the critical line. It is known (see Corollary

3 in Spira [23]) that ζ ′(1
2 + it) 6= 0 if ζ(1

2 + it) 6= 0. Hence, there are no multiple a-

points of ζ(s) on the critical line Re s = 1
2 except for possibly a = 0. It follows that

not all combinations of values for the zeta-function and its derivative are possible.

In this direction the following theorem is true.

Theorem 1. The set

{(ζ(1
2 + it), ζ ′(1

2 + it)) : t ∈ R}

is not dense in C2.

It follows that the only possible singularities of the curve t 7→ ζ(1
2 + it) have to lie

in the origin. By this result we see that the curve R 3 t→ (ζ(1
2 +it), ζ ′(1

2 +it)) fails

to visit all neighborhoods of all points in C2. If the Riemann hypothesis is true,

the values ζ(σ + it) for t ∈ R are not dense for any fixed σ < 1
2 (see Proposition 5

below). As mentioned above, it is unknown whether the values of the zeta-function

1The paper [4] of Bohr, Landau & Littlewood consists of three independent chapters, the first

belonging essentially to Bohr, the second to Landau, and the third to Littlewood.
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on the critical line are dense in the complex plane or not. It was shown by Voronin

[28] that the multidimensional analogue is true for vertical lines in the open right

half of the critical strip: the set {(ζ(σ + it), ζ ′(σ + it), . . . , ζ(n−1)(σ + it)) : t ∈ R}
is dense in Cn for all positive integers n for every fixed σ ∈ (1

2 , 1). Actually, this

result was proved by Voronin previous to his famous universality theorem which

may be interpreted as an infinite analogue (see [13, 25]); the case n = 1 is due to

Bohr & Courant [2] (see Figure 1). However, the situation on the critical line is

completely different as follows from Theorem 1 above; in particular we see that

Voronin’s universality theorem cannot be extended to any region that covers the

critical line.
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Figure 1: The curves t 7→ ζ(σ + it) for σ = 1
5 ,

1
2 , and 4

5 from left to right, all for

t ∈ [0, 100]. The curve on the right is known to be dense in the complex plane, the curve

on the left is not dense if Riemann’s hypothesis is true, and for the curve in the middle

this question is open.

There is another related topic we want to investigate. The set of values of ζ(s)

has the cardinality of the continuum. For some values of a the underlying a-points

might be non-simple, namely if the derivative vanishes; however, ζ ′(s) has only

countably many zeros. Thus, there are only countably many numbers a such that

among all a-points there is at least one non-simple a-point. We conjecture that for

any fixed complex number a, almost all a-points are simple. By a rather simple

method Conrey, Ghosh & Gonek [8] proved that there are infinitely many simple

zeros of the zeta-function; in [9] they have shown by technical refinement that more

than 19
27 of the nontrivial zeros are simple provided the Riemann hypothesis for the

Riemann zeta-function and the generalized Lindelöf hypothesis for all Dirichlet L-

functions are true; the latter condition has been removed by Bui & Heath-Brown

[5]. It is our aim to extend their method to simple a-points; however, for the sake

of simplicity and unconditionality, here we are not concerned with this type of

quantitive results.
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Theorem 2. Let a be any fixed complex number. As T →∞,∑
0<γa≤T

ζ ′(ρa) = (1
2 − a)

T

2π

(
log

T

2π

)2

+ (c0 − 1 + 2a)
T

2π
log

T

2π

+(1− c0 − c2
0 − 3c1 − 2a)

T

2π
+ E(T ),

where the summation is over nontrivial a-points ρa = βa + iγa, the numbers cn
are the Stieltjes constants (defined by (3) below), and the error term is E(T ) �
T exp(−C(log T )1/2) with some absolute positive constant C; if the Riemann hy-

pothesis is true, then E(T ) � T 1/2+ε. In any case, for any complex number a

there exist infinitely many simple a-points.

It should be mentioned that Gonek, Lester & Milinovich [15] proved, subject to

certain hypotheses, that a positive proportion of the a-points of ζ(s) are simple;

they also obtained an unconditional result for the a-points in fixed strips to the

right of the critical line.

In view of the asymptotic formula of Theorem 2 the value a = 1
2 appears to be

somehow special for the zeta-function since in this case the main term is of lower

order. It is easy to see that for a = 1
2 the second order term does not vanish. In

fact, the Stieltjes constants are the coefficients of the Laurent series expansion of

zeta at s = 1,

(3) ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)n
cn
n!

(s− 1)n,

the constant term c0 = limN→∞(
∑N

n=1
1
n − logN) = 0.577 . . . is the Euler-

Mascheroni constant (see Ivić [18]). We do not know why the value 1
2 is special

in this sense. Nevertheless, the asymptotics from Theorem 2 serve very well for a

heuristic explanation of the very regular behaviour of the curve t 7→ ζ(1
2 + it) as we

shall explain now. Based on computations by Haselgrove [16], Shanks [22] observed

that ζ(1
2 + it) approaches its zeros most of the times from the 3rd or 4th quadrant,

following Gram’s law.2 It was conjectured by Shanks that the values ζ ′(1
2 + iγ)

are positive real in the mean, where γ runs through the set of positive ordinates

of the nontrivial zeros. This follows from the asymptotics obtained by Conrey,

Ghosh & Gonek [8] under assumption of the Riemann hypothesis. More precise

asymptotical formulas were derived by Fujii [10, 12] (see (19) below). Theorem 2

extends these results to general a. By Levinson’s result (2) almost all a-points lie

arbitrarily close to the critical line, so we may expect that the main contribution

results from these a-points. Notice that the tangent to the curve t 7→ ζ(1
2 + it) is

given by iζ ′(1
2 + it). In conclusion, the main term (1

2−a) T2π log T describes how the

values ζ(1
2 + it) approach the value a in the complex plane on average (see Figure

2).

Finally, we shall prove another theorem of the same flavour.

2Recently, it was shown by Trudgian [27] that Gram’s law fails for a positive proportion. The

first failure appears at t = 282.454 . . ..
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Figure 2: The curve t 7→ ζ( 1
2 + it) for 0 ≤ t ≤ 50 and the vector field i( 1

2 −a); The value
1
2 is the fixed point of the latter – the eye of the hurricane!

Theorem 3. For 0 6= δ := 2πα
log T

2π

� 1, as T →∞,∑
0<γa≤T

(ζ(ρa + iδ)− a)

=

(
1− sin 2πα

2πα
+ iπα

(
sinπα

πα

)2

− a{1− cos 2πα+ i sin 2πα}

)
T

2π
log

T

2π

+
T

2π

(
− 1 + exp(−2πiα)

(
1

iδ

(
1

1− iδ
− 1

)
− 1

1− iδ

(
ζ(1− iδ) +

1

iδ

))
+
ζ ′

ζ
(1 + iδ) +

1

iδ
− a
{

1 + log ca + (cos 2πα− i sin 2πα)×

×
(

1

(1− iδ)2
− 2πiα

1− iδ

)})
+ E(T ),

uniformly in α, where the summation is over nontrivial a-points, ca is the constant

from (1) and the error term is of the same size as in Theorem 2.

Theorem 3 generalizes another result of Fujii [10] in the special case a = 0:∑
0<γ≤T

ζ(ρ+ iδ) ∼

(
1− sin 2πα

2πα
+ iπα

(
sinπα

πα

)2
)
T

2π
log T,

where the summation is taken over the zeros ρ = β + iγ; the precise asymptotical

formula with remainder term is given below as (23) and (24). A similar discrete

moment was considered by Gonek [14], who proved under assumption of the Rie-

mann hypothesis that∑
0<γ≤T

|ζ(1
2 + i(γ + δ))|2 =

(
1−

(
sin(πα)

πα

)2
)
T

2π
(log T )2 +O(T log T )
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uniformly in α for |α| ≤ 1
2 log T . Fujii [11] refined Gonek’s result in replacing the er-

ror term by further explicit main terms plus an error term of order O(T 1/2(log T )3).

Based on the idea to model the behaviour of the Riemann zeta-function on the crit-

ical line by the characteristic polynomials of certain Random Matrix ensembles,

Hughes [17] conjectured, assuming the Riemann hypothesis, that∑
0<γ≤T

|ζ(1
2 + i(γ + δ))|2k ∼ Fk(2πα)a(k)

G(k + 1)2

G(2k + 1)

T

2π
(log T )k

2+1,

where Fk is defined in terms of Bessel-functions, a(k) is an Euler product, and

G is Barnes’ double gamma-function. So far, the Random Matrix model was not

used to do predictions off the critical line. It would be very interesting to have a

counterpart of Theorem 3 in Random Matrix Theory.

The remaining parts of the article are organized as follows. In the next section

we give the proof of Theorem 1. In Section 3 we collect some preliminary results for

the proof of Theorem 2 which is given in Section 4, resp. the proof of Theorem 3

which is given in Section 5. In the final section we state some concluding remarks.

For basic zeta-function theory we refer to Ivić [18], Titchmarsh [26].

2. Proof of Theorem 1

Logarithmic differentiation of the functional equation

(4) ζ(s) = ∆(s)ζ(1− s), where ∆(s) = 2sπs−1Γ(1− s) sin(πs2 ),

yields

(5)
ζ ′

ζ
(s) =

∆′

∆
(s)− ζ ′

ζ
(1− s).

In view of

(6)
∆′

∆
(σ + it) = − log

|t|
2π

+O(|t|−1) for |t| ≥ 1

we get

ζ ′

ζ
(1

2 + it) = −
(
ζ ′

ζ

)
(1

2 + it)− log
|t|
2π

+O(|t|−1).(7)

For a ∈ R with a 6= 0 we assume that there is ta such that

(8) |ζ(1
2 + ita)− a| < ε and |ζ ′(1

2 + ita)− a| < ε,

where 0 < ε < |a|. Then

ζ ′

ζ
(1

2 + ita) =
a+O(ε)

a+O(ε)
= 1 +O(ε).

If a is sufficiently large then |ta| ≥ 1. Hence, we deduce from (7) that

2 = − log
|ta|
2π

+O(|ta|−1 + ε).

For sufficiently large a the latter formula is in contradiction with (8). This finishes

the proof of Theorem 1.
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3. Preliminaries

In the sequel we write the complex variable as s = σ+ it with real σ, t. We start

with the growth of the zeta-function in the left half-plane.

Lemma 4. There is a constant c > 0 such that, for σ ≤ 0 and |t| ≥ 2,

|ζ(σ + it)| > c|t|1/2−σ

log t
.

If Riemann’s hypothesis is true, then for any ε > 0 and any σ0 < 1
2 there is

c = c(ε, σ0) > 0 such that, for σ ≤ σ0 <
1
2 and |t| ≥ 2,

|ζ(σ + it)| > c|t|1/2−σ+ε.

Proof. It is known (see Patterson [20], Exercise 4.6) that

ζ(1 + it)� 1

log t
for |t| ≥ 2.

Then the first part of the lemma follows by the functional equation (4) in combi-

nation with Stirling’s formula

(9)

Γ(s) = exp

((
s− 1

2

)
log s− s+

log 2π

2

)(
1 +Oσ1

(
1

s

))
for σ ≥ σ1 > 0.

Assuming the Riemann hypothesis, for fixed σ > 1
2 we may use the bound ζ(σ +

it)� |t|−ε from [26], Chapter 14.2. This finishes the proof of the lemma.

We have the following application of the previous lemma.

Proposition 5. If the Riemann hypothesis is true, then the values ζ(σ + it) for

t ∈ R are not dense for any fixed σ < 1
2 .

Proof. By Lemma 4, for |t| > T0 > 2, the values of |ζ(σ+it)| are greater than some

constant C = C(T0). Then the curve ζ(σ + it), t ∈ [−T0, T0], which is continuous

and of finite length, can not be dense in the disc |z| ≤ C.

The next lemma shows that certain a-points are related to trivial zeros of the

zeta-function:

Lemma 6. For any complex number a there exists a positive integer N such that

there is a simple a-point of ζ(s) in a small neighbourhood around s = −2n for all

positive integers n ≥ N ; apart from these there are no other a-points in the left

half-plane Re s ≤ 0 except possibly finitely many near s = 0.

This observation is due to Levinson [19]; for the proof one applies the functional

equation for ζ in combination with Rouché’s theorem and Stirling’s formula. The

second assertion follows from Lemma 4.

Now we investigate the order of growth of the almost entire function ζ(s) − a.

Note that the order of an entire function f is defined to be the infimum of all real

numbers b for which the estimate

|f(s)| ≤ exp(|s|b)
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holds for all sufficiently large |s|. The following lemma is well-known in the case

a = 0; the general case can be treated similarly.

Lemma 7. For any a the function (s− 1) (ζ(s)− a) is entire of order 1.

Proof is analogous to the proof of Theorem 2.12 in Titchmarsh [26].

The next lemma generalizes the well-known partial fraction decomposition of

the logarithmic derivative of ζ:

Lemma 8. Let a be a fixed complex number. Then, for −1 ≤ σ ≤ 2, |t| ≥ 1,

ζ ′(s)

ζ(s)− a
=

∑
|t−γa|≤1

1

s− ρa
+O(log(|t|+ 1)),

where the summation is taken over all a-points ρa = βa+iγa satisfying |t−γa| ≤ 1.

Proof. Since (s−1)(ζ(s)−a) is an integral function of order one (by the previous

lemma), Hadamard’s factorization theorem yields

(s− 1)(ζ(s)− a) = exp(A+Bs)
∏
ρa

(
1− s

ρa

)
exp

(
s

ρa

)
,

where A and B are certain complex constants and the product is taken over all

zeros ρa of (s − 1)(ζ(s) − a) (trivial and nontrivial a-points). Hence, taking the

logarithmic derivative, we get

ζ ′(s)

ζ(s)− a
= B − 1

s− 1
+
∑
ρa

(
1

s− ρa
+

1

ρa

)
;

the latter formula can be found in [4], however, for our reasoning we prefer to work

with a truncated version. By Lemma 6 there exists a positive constant c such that

the imaginary parts of all a-points in the left half-plane lie in the interval [−c, c].
Moreover, it follows that there are 1

2σ + O(1) many of these trivial a-points with

real part greater than −σ as σ → +∞. Thus, for s distant from any of these trivial

a-points, we have∑
trivial ρa

(
1

s− ρa
+

1

ρa

)
�

∑
trivial ρa

√
σ2 + t2√

β2
a + γ2

a

√
(σ − βa)2 + (t− γa)2

� 1 +

∫ ∞
1

|t|
x
√
x2 + t2

dx� log t

as t→∞. Hence, for those values of s,

ζ ′(s)

ζ(s)− a
= B − 1

s− 1
+

∑
nontrivial ρa

(
1

s− ρa
+

1

ρa

)
+O(log t).

Note that the main term in the Riemann-von Mangoldt type formula for the num-

ber of a-points (1) does not depend on a. Therefore, the same reasoning as for

a = 0, the case of zeros of ζ, can be applied to the latter formula (see Titchmarsh

[26], §9.6). This yields the assertion of the lemma.
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4. Proof of Theorem 2

By the calculus of residues,

(10)
∑

0<γa≤T
ζ ′(ρa) =

1

2πi

∮
ζ ′(s)2

ζ(s)− a
ds,

where the integration is taken over a rectangular contour in counterclockwise di-

rection according to the location of the nontrivial a-points of ζ(s), to be specified

below. In view of the Riemann-von Mangoldt-type formula (1) the ordinates of

the a-points cannot lie too dense. For any large T0 we can find a T ∈ [T0, T0 + 1)

such that

(11) min
ρa
|T − γa| ≥

1

log T
,

where the minimum is taken over all nontrivial a-points ρa = βa + iγa. We shall

distinguish the cases a 6= 1 and a = 1.

First, lets assume that a 6= 1. We choose B = log T . For σ → +∞ we have that

(12) ζ(σ + it) = 1 + o(1)

uniformly in t. Thus there are no a-points in the half-plane Re s > B−1. Further,

define b = 1 + 1
log T . Then we may suppose that there are no a-points on the line

segments [B,B + iT ] and [1 − b, 1 − b + iT ] (by varying b slightly if necessary).

Moreover, in view of Lemma 6 there are only finitely many trivial a-points to the

right of Re s = 1− b. Hence, in (10) we may choose the counterclockwise oriented

rectangular contourR with vertices 1−b+i, B+i, B+iT, 1−b+iT at the expense of

a small error for disregarding the finitely many nontrivial a-points below Im s = 1

and for counting finitely many trivial a-points to the right of Re s = 1− b :∑
0<γa≤T

ζ ′(ρa) =
1

2πi

∫
R

ζ ′(s)2

ζ(s)− a
ds+O(1).

If there is any a-point on the line segment [1− b+ i, B + i], we exclude this value

by a small indention; the contribution of the integral over this interval is bounded,

hence negligible.

Next we consider the integral over the upper horizontal line segment [B+ iT, 1−
b + iT ]. By the Phragmén-Lindelöf principle and by the functional equation (4),

for σ ≥ −3,

(13) ζ(σ + it)� |t|max{(1−σ),0}/2+ε as |t| → ∞

with an implicit constant depending only on ε (see Titchmarsh [26], §5.1). Hence

by Cauchy’s integral formula we deduce, for σ ≥ −2,

ζ ′(σ + it)� |t|max{(1−σ),0}/2+ε as |t| → ∞.

Then from Lemma 8 in view of the number of nontrivial a-points (1) we get, for

σ ≥ 1− b,

(14)
ζ ′(σ + iT )2

ζ(σ + iT )− a
� T (1−σ)/2+ε.
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Consequently, the integrals over the horizontal line segments contribute at most

O(T 1/2+ε).

It remains to consider the vertical integrals. For σ → +∞,

ζ ′(s)� 2−σ

uniformly in t. This and the formula (12) give∫ B+iT

B

ζ ′(s)2

ζ(s)− a
ds� T−2 log 2 log T.

Collecting together,

(15)
∑

0<γa≤T
ζ ′(ρa) = − 1

2πi

∫ 1−b+iT

1−b

ζ ′(s)2

ζ(s)− a
ds+O(T 1/2+ε).

Hence, it remains to evaluate the integral over the left vertical line segment [1 −
b+ iT, 1− b] of R.

By Lemma 4 there exists a positive constant A, depending only on a, such that∣∣∣∣ a

ζ(s)

∣∣∣∣ < 1
2 for s = 1− b+ it, |t| ≥ A.

Hence, the geometric series expansion

1

ζ(s)− a
=

1

ζ(s)

(
1 +

a

ζ(s)
+
∞∑
k=2

(
a

ζ(s)

)k)

is valid for s from [1− b+ iA, 1− b+ iT ]. Since

1

2πi

∫ 1−b+iA

1−b+i

ζ ′(s)2

ζ(s)− a
ds� 1,

we deduce

− 1

2πi

∫ 1−b+iT

1−b

ζ ′(s)2

ζ(s)− a
ds

= − 1

2πi

∫ 1−b+iT

1−b+iA

{
ζ ′2

ζ
(s) + a

(
ζ ′

ζ
(s)

)2

+
ζ ′2

ζ
(s)

∞∑
k=2

(
a

ζ(s)

)k}
ds

+O(1)(16)

= J1 + J2 + J3 +O(1),

say. To estimate the third integral, we use Lemma 4 in combination with (5) and

(6) in order to obtain

J3 = − a

2πi

∫ 1−b+iT

1−b+iA

(
ζ ′

ζ
(s)

)2 ∞∑
`=1

(
a

ζ(s)

)`
ds

� T (log T )2
∞∑
`=1

(
log T

T 1/2

)`
� T 1/2(log T )3.(17)
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Applying the functional equation in the form (5), we find for the second integral

in (16)

J2 = − a

2πi

∫ 1−b+iT

1−b+iA

(
∆′

∆
(s)− ζ ′

ζ
(1− s)

)2

ds

= − a

2πi

∫ 1−b+iT

1−b+iA

{(
∆′

∆
(s)

)2

− 2
∆′

∆
(s)

ζ ′

ζ
(1− s) +

(
ζ ′

ζ
(1− s)

)2
}
ds

= H1 +H2 +H3,

say. In combination with the asymptotic formula (6) we easily get

H1 = − a

2π

∫ T

A

(
− log

t

2π
+O(t−1)

)2

dt

= −a

{
T

2π

(
log

T

2π

)2

− T

π
log

T

2π
+
T

π

}
+O(log T ).

In a similar way we find

H2 = −a
π

∫ T

A

(
log

t

2π
+O(t−1)

)
ζ ′

ζ
(b− it)dt

=
a

π

∞∑
m=2

Λ(m)

mb

∫ T

A

(
log

t

2π
+O(t−1)

)
exp(−it logm)dt.

Integration by parts shows that the integral is O(log T ), hence

H2 � log T

∞∑
m=2

Λ(m)

mb
= log T

∣∣∣∣ζ ′ζ (b)

∣∣∣∣� (log T )2.

The same reasoning shows

H3 �
∞∑

m,n=2

Λ(m)Λ(n)

(mn)b

∣∣∣∣∫ T

A
exp(−it log(mn))dt

∣∣∣∣� (log T )2.

Hence, collecting together we find

J2 = −a

{
T

2π

(
log

T

2π

)2

− T

π
log

T

2π
+
T

π

}
+O((log T )2).(18)

It remains to evaluate the first integral on the right-hand side of (16). It should

be noted that this is essentially the integral giving the main term in the proof of

Conrey, Ghosh & Gonek for the existence of infinitely many simple zeros [8], resp.

[9] (apart from the mollifier used there to obtain conditional quantitive results), so

J1 = − 1

2πi

∫ b+iT

b

ζ ′2

ζ
(s)ds =

∑
0<γ≤T

ζ ′(ρ) +O(T 1/2+ε) ∼ T

4π
(log T )2,

where the summation is over all nontrivial zeros. Fujii [10, 12] obtained a more

precise asymptotic formula, namely, as T →∞,

(19)
∑

0<γ≤T
ζ ′(ρ) =

T

4π

(
log

T

2π

)2

+(c0−1)
T

2π
log

T

2π
+(1−c0−c2

0−3c1)
T

2π
+E(T ),
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where the numbers c0, c1 are the Stieltjes constants given by (3), and the error

term E(T ) is O(T exp(−C(log T )1/2)) unconditionally with some absolute positive

constant C, resp. O(T 1/2(log T )7/2) under assumption of the Riemann hypothesis;

note that [12] contains a correction of the corresponding formula in [10].

Substituting (17), (18), and (19) into (16), leads via (15) to the desired asymp-

totical formula for every T satisfying condition (11). To get this uniformly in T we

allow an arbitrarily T at the expense of an error � T 1/2+ε (by shifting the path of

integration using (13)). This proves Theorem 2 in the case a 6= 1.

For a = 1 we consider the function f(s) := 2s(ζ(s)− 1) in place of ζ(s)− a. By

the Dirichlet series expansion

(20) 2s(ζ(s)− 1) = 1 +

∞∑
n=3

(
2

n

)s
it follows that there is a zero-free right half-plane for f(s). Computing the loga-

rithmic derivative,

f ′

f
(s) = log 2 +

ζ ′(s)

ζ(s)− 1
,

we observe that the non-constant term corresponds to the logarithmic derivative

in the case a 6= 1 while the constant term does not contribute by integration over

a closed contour. This proves Theorem 2 for general a.

5. Proof of Theorem 3

The proof is rather similar to the previous one. Let the quantities b, B and A

be defined as above. We start with

(21)
∑

0<γa≤T
ζ(ρa + iδ) =

1

2πi

∮
ζ ′(s)

ζ(s)− a
ζ(s+ iδ)ds,

where the integration is again over a rectangular contour with vertices 1 − b +

i, B+ i, B+ iT, 1− b+ iT in counterclockwise direction. As before we assume that

there are no a-points on this contour, otherwise we can circumvent these values by

a small indention at the expense of an error O(T 1/2+ε). By the same reasoning as

above (see (16)) the main contribution comes from the integral

(22) − 1

2πi

∫ 1−b+iT

1−b+iA

ζ ′

ζ
(s)

(
1 +

a

ζ(s)
+

∞∑
k=2

(
a

ζ(s)

)k)
ζ(s+ iδ)ds,

defining a sum consisting of three terms. The first term was essentially already

computed by Fujii [10], when he proved in the case a = 0 the asymptotical formula

∑
0<γ≤T

ζ(ρ+ iδ) =

(
1− sin 2πα

2πα
+ iπα

(
sinπα

πα

)2
)
T

2π
log

T

2π

+
T

2π
c(α, T ) + E(T )(23)
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where the summation is taken over the zeros ρ = β + iγ,

c(α, T ) := −1 + exp(−2πiα)

{
1

iδ

(
1

1− iδ
− 1

)
− 1

1− iδ

(
ζ(1− iδ) +

1

iδ

)}
+
ζ ′

ζ
(1 + iδ) +

1

iδ
,(24)

and the error term estimate E(T ) � T exp(−C(log T )1/2) unconditionally, resp.

� T 1/2(log T )5/2 under assumption of Riemann’s hypothesis. This yields

− 1

2πi

∫ 1−b+iT

1−b+iA

ζ ′

ζ
(s)ζ(s+ iδ)ds =

∑
0<γ≤T

ζ(ρ+ iδ) +O(T 1/2+ε)

=

(
1− sin 2πα

2πα
+ iπα

(
sinπα

πα

)2
)
T

2π
log

T

2π
+
T

2π
c(α, T ) + E(T ).(25)

The third term in (22) contributes again to the error term. Applying the func-

tional equations (4) and (5), the second term can be rewritten as

− a

2πi

∫ 1−b+iT

1−b+iA

ζ ′

ζ
(s)

ζ(s+ iδ)

ζ(s)
ds

= − a

2πi

∫ 1−b+iT

1−b+iA

(
∆′

∆
(s)− ζ ′

ζ
(1− s)

)
∆(s+ iδ)

∆(s)

ζ(1− s− iδ)
ζ(1− s)

ds

= K1 +K2,

say. It follows from Stirling’s formula (9) that

∆(σ + i(δ + t))

∆(σ + it)
= exp

(
−iδ log

t

2π

)
(1 +O(t−1)).

Using (6) we have that

K1 =
a

2π

∞∑
m,n=1

µ(m)niδ

(mn)b

∫ T

A

(
log

t

2π
+O(t−1)

)
exp

(
it log(mn)− iδ log

t

2π

)
dt.

For mn 6= 1 the integral can be estimated by integrating by parts; these terms

contribute an error term O((log T )3). Computing the integral for m = n = 1

yields

K1 =
a

2π

∫ T

A
log

t

2π
exp

(
−iδ log

t

2π

)
dt+O((log T )3)

= a exp(−2πiα)
T

2π

(
log

T

2π
− 1

1− iδ

)
1

1− iδ
+O((log T )3).

This gives besides the first term in (22) a further contribution to the main term.

Similarly we get K2 � (log T )3.

Note that
1

1− iδ
log

T

2π
= log

T

2π
+

2πiα

1− iδ
.

Together with (25) we get the asymptotic formula for (21). Subtracting (1) the

proof of Theorem 3 is complete.
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It should be noted that differentiation of the formula of Theorem 3 with respect

to α leads to the formula of Theorem 2; for this purpose one has to be aware that

all error terms are uniform in α.

6. Concluding remarks

i) Similar graphs as for curves t 7→ ζ(σ + it) (Figure 1) appear for other zeta-

and L-functions too (see for example Akiyama & Tanigawa [1] for L-functions

associated with elliptic curves). It seems that the shape of these curves depends

on the type of functional equation, the location of zeros, as well as on the first

coefficient of the Dirichlet series expansion.

ii) It is possible to consider short intervals (T, T +H] for the imaginary parts of

nontrivial a-points in place of (0, T ] as was done in [24] for zeros; here short means

that T 1/2+ε ≤ H ≤ T . Moreover, we observe that, generalizing Theorem 2 and 3,∑
|γa|≤T

f(ρa) =
∑
|γ|≤T

f(ρ)− a

2πi

∫
ζ ′(s)

ζ(s)− a
f(s)ds+ error,

where the summation on the right-hand side is taken over nontrivial zeros (and

not a-points), and where f is any sufficiently smooth Dirichlet polynomial or series.

These extensions will be considered in a sequel to this article.

iii) As already pointed out in the introduction, quite much is known about the

distribution of a-points to the right of the critical line whenever a is a fixed complex

number different from zero. On the contrary, on the critical line for no complex

number a apart from zero it is proved that there exist infinitely many a-points.

Hence, it seems to be an interesting problem to study the location of a-points to

the left or to the right of curves s = σ(t) + it with limt→∞ σ(t) = 1
2 . Selberg [21]

was the first to obtain results on the statistical distribution of a-points in such

regions (even for elements in the Selberg class).
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[3] H. Bohr, B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion, zweite Mit-

teilung, Acta Math. 58 (1932), 1-55

[4] H. Bohr, E. Landau, J.E. Littlewood, Sur la fonction ζ(s) dans le voisinage de la droite

σ = 1
2
, Bull. de l’Acad. royale de Belgique (1913), 3-35

[5] H.M. Bui, D.R. Heath-Brown, On simple zeros of the Riemann zeta-function, Bull. Lond.

Math. Soc. 45 (2013), 953-961

[6] H.M. Bui, J.B. Conrey, M.P. Young, More than 41 % of the zeros of the zeta function are

on the critical line, Acta Arith. 150 (2011), 35-64

[7] J.B. Conrey, More than two fifths of the zeros of the Riemann zeta-function are on the

critical line, J. reine angew. Math. 399 (1989), 1-26

[8] J.B. Conrey, A. Ghosh, S.M. Gonek, Simple zeros of zeta functions, Colloq. de Theorie

Analyt. des Nombres, (1985), 77-83



ON THE ROOTS OF THE EQUATION ζ(s) = a 15

[9] J.B. Conrey, A. Ghosh, S.M. Gonek, Simple zeros of the Riemann zeta-function, Proc.

Lond. Math. Soc., III. Ser. 76 (1998), 497-522

[10] A. Fujii, On a conjecture of Shanks, Proc. Japan Acad. 70 (1994), 109-114

[11] A. Fujii, On a mean value theorem in the theory of the Riemann zeta-function, Comment.

Math. Univ. St. Paul. 44 (1995), 59-67

[12] A. Fujii, On the distribution of values of the derivative of the Riemann zeta function at its

zeros. I, Tr. Mat. Inst. Steklova 276 (2012), Teoriya Chisel, Algebra i Analiz, 57-82; translation

in Proc. Steklov Inst. Math. 276 (2012), 51-76
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al. (eds.), Università di Salerno 1992, 367-385

[22] D. Shanks, Review of Haselgrove, Math. Comp. 15 (1961), 84-86

[23] R. Spira, On the Riemann zeta function, J. London Math. Soc. 44 (1969), 325-328

[24] J. Steuding, On simple zeros of the Riemann zeta-function in short intervals on the critical

line, Acta Math. Hung. 96 (2002), 259-308

[25] J. Steuding, Value-Distribution of L-Functions, Lecture Notes in Mathematics , Vol. 1877,

Springer, 2007

[26] E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., revised by D.R. Heath-

Brown, Oxford University Press, 1986

[27] T. Trudgian, Gram’s Law Fails a Positive Proportion of the Time, available as

arXiv:0811.0883 at http://front.math.ucdavis.edu/0811.0883

[28] S.M. Voronin, The distribution of the non-zero values of the Riemann zeta-function, Izv.

Akad. Nauk Inst. Steklov 128 (1972), 131-150 (Russian)

[29] Z. Ye, The Nevanlinna functions of the Riemann zeta-function, J. Math. Analysis Appl. 233

(1999), 425-435
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