Skip to main content

Advertisement

Log in

Cardio-Oncology Preventive Care: Racial and Ethnic Disparities

  • Race and Ethnicity Disparities (M. Albert and L. Brewer, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2022

This article has been updated

Abstract

Purpose of Review

As cancer screening and treatment continue to improve, the number of cancer survivors is growing rapidly. Cardiovascular disease is the leading cause of death in cancer survivors. In this review, we explore racial and ethnic disparities in cardiovascular toxicity from cancer therapies, with a particular focus on prevention. In addition, we propose potential solutions to address these disparities.

Recent Findings

Multiple studies have found that African Americans experience higher rates of cardiotoxicity from chemotherapy than Caucasians. Few studies have explored reasons for these disparities. Social determinants of health and disparities in cardiotoxicity screening and surveillance, as well as risk factor incidence and management, are likely among underlying mediators. Studies about prevention of cardiotoxicity with dexrazoxane, beta blockers, angiotensin-converting enzyme (ACE) inhibitors, statins, and lifestyle modification were reviewed. In published studies, racial/ethnic minorities were generally underrepresented with racial or ethnic demographic information entirely missing in most studies.

Summary

Addressing critical health disparities in cardio-oncology will require a multidisciplinary approach. Minorities are continually underrepresented in clinical trials. Improving awareness of health disparities among providers, cultural competency training, and the implementation of quality measures to standardize care have the potential to reduce the impact of explicit and implicit bias leading to inferior care for racial/ethnic minorities. Increasing access to cardio-oncology providers in low socioeconomic areas has the potential to improve rates of screening and surveillance. Future applications of precision medicine and innovation in preventive cardio-oncology should be carefully designed and disseminated to alleviate and not worsen disparate care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cardinale D, Colombo A, Cipolla CM. Prevention and treatment of cardiomyopathy and heart failure in patients receiving cancer chemotherapy. Curr Treat Options Cardiovasc Med. 2008;10(6):486–95.

    Article  PubMed  Google Scholar 

  2. Moslehi J. The cardiovascular perils of cancer survivorship. N Engl J Med. 2013;368(11):1055–6.

    Article  CAS  PubMed  Google Scholar 

  3. Bisel HF, Wróblewski F, La Due JS. Incidence and clinical manifestations of cardiac metastases. J Am Med Assoc. 2019;153(8):712–5.

    Article  Google Scholar 

  4. Hoffmeier A, Sindermann JR, Scheld HH, Martens S. Cardiac tumors—diagnosis and surgical treatment. Dtsch Arztebl Int. 2014;111(12):205–11.

    PubMed  PubMed Central  Google Scholar 

  5. Reynen K. Frequency of primary tumors of the heart. Am J Cardiol. 1996;77(1):107.

    Article  CAS  PubMed  Google Scholar 

  6. Reynen K, Daniel WG. Malignant primary tumors of the heart. Z Kardiol. 1997;86(8):598–607.

    Article  CAS  PubMed  Google Scholar 

  7. Bussani R, De-Giorgio F, Abbate A, Silvestri F. Cardiac metastases. J Clin Pathol. 2007;60(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldberg AD, Blankstein R, Padera RF. Tumors metastatic to the heart. Circulation. 2013;128(16):1790–4.

    Article  PubMed  Google Scholar 

  9. Cancer statistics, 2019 - Siegel - 2019 - CA: A Cancer Journal for Clinicians - Wiley Online Library. 2019.

  10. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  CAS  PubMed  Google Scholar 

  11. Ward E, Jemal A, Cokkinides V, Singh GK, Cardinez C, Ghafoor A, et al. Cancer disparities by race/ethnicity and socioeconomic status. CA Cancer J Clin. 2004;54(2):78–93.

    Article  PubMed  Google Scholar 

  12. Bach PB, Schrag D, Brawley OW, Galaznik A, Yakren S, Begg CB. Survival of blacks and whites after a cancer diagnosis. Jama. 2002;287(16):2106–13.

    Article  PubMed  Google Scholar 

  13. Carnethon MR, Pu J, Howard G, Albert MA, Anderson CAM, Bertoni AG, et al. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation. 2017;136(21):e393–423.

    Article  PubMed  Google Scholar 

  14. Rosamond WD, Chambless LE, Heiss G, Mosley TH, Coresh J, Whitsel E, et al. Twenty-two year trends in incidence of myocardial infarction, CHD mortality, and case-fatality in four US communities, 1987 to 2008. Circulation. 2012;125(15):1848–57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lackland DT. Racial differences in hypertension: implications for high blood pressure management. Am J Med Sci. 2014;348(2):135–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Braithwaite D, Tammemagi CM, Moore DH, Ozanne EM, Hiatt RA, Belkora J, et al. Hypertension is an independent predictor of survival disparity between African-American and white breast cancer patients. Int J Cancer. 2009;124(5):1213–9.

    Article  CAS  PubMed  Google Scholar 

  17. • Breathett K, Liu WG, Allen LA, Daugherty SL, Blair IV, Jones J, et al. African Americans are less likely to receive care by a cardiologist during an intensive care unit admission for heart failure. JACC Heart Fail. 2018;6(5):413–20. Breathett et al. demonstrate that African American heart failure patients are less likely to receive care by a cardiologist in the intensive care unit when compared with Caucasians, and that care by cardiologist is associated with higher in-hospital survival.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taylor AL, Ziesche S, Yancy C, Carson P, D’Agostino R, Ferdinand K, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351(20):2049–57.

    Article  CAS  PubMed  Google Scholar 

  19. Giblin EM, Adams KF Jr, Hill L, et al. Comparison of hydralazine/nitrate and angiotensin receptor neprilysin inhibitor use among black versus nonblack Americans with heart failure and reduced ejection fraction (from CHAMP-HF). Am J Cardiol. 2019;124(12):1900–6. https://doi.org/10.1016/j.amjcard.2019.09.020.

  20. Karlamangla AS, Merkin SS, Crimmins EM, Seeman TE. Socio-economic and ethnic disparities in cardiovascular risk in the United States, 2001-2006. Ann Epidemiol. 2010;20(8):617–28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frierson GM, Howard EN, DeFina LE, Powell-Wiley TM, Willis BL. Effect of race and socioeconomic status on cardiovascular risk factor burden: the Cooper Center Longitudinal Study. Ethn Dis. 2013;23(1):35–42.

    PubMed  Google Scholar 

  22. •• Caplin DA, Smith KR, Ness KK, Hanson HA, Smith SM, Nathan PC, et al. Effect of population socioeconomic and health system factors on medical care of childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Adolesc Young Adult Oncol. 2017;6(1):74–82. Caplin et al. conduct a key study evaluating the role of socioeconomic status on care in childhood cancer survivors. Their study includes 7899 childhood cancer survivors in the USA and Canada enrolled in the Childhood Cancer Survivor Study (CCSS). They find that higher population median income is associated with risk-based survivor-focused care and that areas with higher median income have higher rates of echocardiogram screening among survivors at risk of cardiomyopathy (for every $10,000 increase in median income, there is a 12% increase in odds of echocardiogram screening; 95% CI 1.05–1.20). They also find that the presence of more physicians and surgeons in the county of residence is associated with the completion of a greater number echocardiograms.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Armenian SH, Armstrong GT, Aune G, Chow EJ, Ehrhardt MJ, Ky B, et al. Cardiovascular disease in survivors of childhood cancer: insights into epidemiology, pathophysiology, and prevention. J Clin Oncol. 2018;36(21):2135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Liu Q, Leisenring WM, Ness KK, Robison LL, Armstrong GT, Yasui Y, et al. Racial/ethnic differences in adverse outcomes among childhood cancer survivors: the Childhood Cancer Survivor Study. J Clin Oncol. 2016;34(14):1634–43. Liu et al. show that Hispanic and non-Hispanic black childhood cancer survivors have a higher burden of mortality and morbidity when compared with non-Hispanic white counterparts, possibly related to differences in socioeconomic status and cardiovascular risk factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gianni L, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc Toxicol. 2007;7(2):67–71.

    Article  CAS  PubMed  Google Scholar 

  26. Hershman DL, Shao T. Anthracycline cardiotoxicity after breast cancer treatment. Oncology (Williston Park, NY). 2009;23(3):227–34.

    Google Scholar 

  27. Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137(8):e30–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.

    Article  PubMed  CAS  Google Scholar 

  30. Hasan S, Dinh K, Lombardo F, Kark J. Doxorubicin cardiotoxicity in African Americans. J Natl Med Assoc. 2004;96(2):196–9.

    PubMed  PubMed Central  Google Scholar 

  31. •• Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112(12):1980–4. Lotrionte et al. conduct a meta-analysis including 49,017 patients with cancer, almost half of which have been treated with anthracycline-based chemotherapy, to identify the incidence of cardiotoxicity. They identify incident clinical cardiotoxicity (left ventricular function decline with heart failure symptoms) and subclinical cardiotoxicity (left ventricular function decline without symptoms). They also evaluate independent risk factors associated with cardiotoxicity, which include African American ethnicity, anthracycline dose, chest radiotherapy, extremes of age, diabetes, hypertension, and extremes of body mass index. The authors conclude that anthracyclines continue to pose a significant risk for cardiotoxicity.

    Article  CAS  PubMed  Google Scholar 

  32. Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, et al. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lefrak EAPJ, Rosenheim S, et al. A clinicopathologic analysis of Adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  CAS  PubMed  Google Scholar 

  34. Mels CMC, Loots I, Schwedhelm E, Atzler D, Boger RH, Schutte AE. Nitric oxide synthesis capacity, ambulatory blood pressure and end organ damage in a black and white population: the SABPA study. Amino Acids. 2016;48(3):801–10.

    Article  CAS  PubMed  Google Scholar 

  35. Chavez-MacGregor M, Niu J, Zhang N, Elting LS, Smith BD, Banchs J, et al. Cardiac monitoring during adjuvant trastuzumab-based chemotherapy among older patients with breast cancer. J Clin Oncol. 2015;33(19):2176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denegri A, Moccetti T, Moccetti M, Spallarossa P, Brunelli C, Ameri P. Cardiac toxicity of trastuzumab in elderly patients with breast cancer. J Geriatr Cardiol. 2016;13(4):355–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leung HW, Chan AL. Trastuzumab-induced cardiotoxicity in elderly women with HER-2-positive breast cancer: a meta-analysis of real-world data. Expert Opin Drug Saf. 2015;14(11):1661–71.

    Article  CAS  PubMed  Google Scholar 

  38. Rushton M, Johnson C, Dent S. Trastuzumab-induced cardiotoxicity: testing a clinical risk score in a real-world cardio-oncology population. Curr Oncol (Toronto, Ont). 2017;24(3):176–80.

    Article  CAS  Google Scholar 

  39. Tarantini L, Cioffi G, Gori S, Tuccia F, Boccardi L, Bovelli D, et al. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J Card Fail. 2012;18(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  40. •• Litvak A, Batukbhai B, Russell SD, Tsai HL, Rosner GL, Jeter SC, et al. Racial disparities in the rate of cardiotoxicity of HER2-targeted therapies among women with early breast cancer. Cancer. 2018;124(9):1904–11 Litvak et al. determine the difference in cardiotoxicity incidence between African American and Caucasian patients with breast cancer. They evaluate 59 African American and 157 Caucasian breast cancer patients exposed to trastuzumab, with a median follow-up of 5.2 years, to determine the incidence of cardiotoxicity in each group. They find that African American patients have higher rates of cardiotoxicity. The implication of this inequity is the fact that these women have a greater probability of incomplete therapy compared with their Caucasian counterparts.

    Article  CAS  PubMed  Google Scholar 

  41. Baron KB, Brown JR, Heiss BL, Marshall J, Tait N, Tkaczuk KH, et al. Trastuzumab-induced cardiomyopathy: incidence and associated risk factors in an inner-city population. J Card Fail. 2014;20(8):555–9.

    Article  CAS  PubMed  Google Scholar 

  42. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.

    Article  PubMed  Google Scholar 

  43. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  44. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Article  CAS  PubMed  Google Scholar 

  45. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tajiri K, Aonuma K, Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. Jpn J Clin Oncol. 2017;47(8):678–82.

    Article  PubMed  Google Scholar 

  47. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.

    Article  CAS  PubMed  Google Scholar 

  48. Von Hoff DD, Rozencweig M, Slavik M. Daunomycin: an anthracycline antibiotic effective in acute leukemia. Adv Pharmacol Chemother. 1978;15:1–50.

    Article  Google Scholar 

  49. Gastrointestinal Stromal Tumor - GIST - Statistics. 2012.

  50. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Distler JH, Distler O. Cardiotoxicity of imatinib mesylate: an extremely rare phenomenon or a major side effect? Ann Rheum Dis. 2007;66. England:836.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu Z, Cang S, Yang T, Liu D. Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematol Rev. 2009;1(1):e4. https://doi.org/10.4081/hr.2009.e4.

  53. Waliany S, Sainani KL, Park LS, Zhang CA, Srinivas S, Witteles RM. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor. J Am Coll Cardiol CardioOnc. 2019;1(1):24–36.

  54. Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R, Tocchetti CG, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res. 2019;115(5):854–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Desai MY, Jellis CL, Kotecha R, Johnston DR, Griffin BP. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc Imaging. 2018;11(8):1132–49.

    Article  PubMed  Google Scholar 

  56. Menezes KM, Wang H, Hada M, Saganti PB. Radiation matters of the heart: a mini review. Front Cardiovasc Med. 2018;5:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-induced cardiovascular disease: mechanisms and importance of linear energy transfer. Front Cardiovasc Med. 2018;5:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43.

    Article  PubMed  CAS  Google Scholar 

  59. Last J. A dictionary of epidemiology. 4th ed. Oxford: Oxford University Press; 2001.

    Google Scholar 

  60. Mensah GA, Dietz WH, Harris VB, Henson R, Labarthe DR, Vinicor F, et al. Prevention and control of coronary heart disease and stroke--nomenclature for prevention approaches in public health: a statement for public health practice from the Centers for Disease Control and Prevention. Am J Prev Med. 2005;29(5 Suppl 1):152–7.

    Article  PubMed  Google Scholar 

  61. Gillman MW. Primordial prevention of cardiovascular disease. Circulation. 2015;131(7):599–601. https://doi.org/10.1161/CIRCULATIONAHA.115.014849.

  62. • Simell O, Niinikoski H, Ronnemaa T, Lapinleimu H, Routi T, Lagstrom H, et al. Special Turku Coronary Risk Factor Intervention Project for Babies (STRIP). Am J Clin Nutr. 2000;72(5 Suppl):1316s–31s. Simell et al. describe a prospective cohort study in which the study participants are followed from childhood, with an intervention program entitled “STRIP,” which aims to mitigate reversible causes of coronary artery disease. The diet of study participants is adjusted to minimize the dietary consumption of fat. The findings show no growth restrictions and lower levels of serum cholesterol, non-HDL cholesterol, and HDL-cholesterol concentrations in children who received the intervention. This emphasizes the importance and effectiveness of early intervention.

    Article  CAS  PubMed  Google Scholar 

  63. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  64. Jones DN, Jordan JH, Meléndez GC, Lamar Z, Thomas A, Kitzman DW, et al. Frequency of transition from stage a to stage B heart failure after initiating potentially cardiotoxic chemotherapy. JACC Heart Fail. 2018;6(12):1023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  PubMed  Google Scholar 

  66. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e61.

    Article  PubMed  Google Scholar 

  67. Cubbon RM, Lyon AR. Cardio-oncology: concepts and practice. Indian Heart J. 2016;68(Suppl 1):S77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Negishi T, Thavendiranathan P, Negishi K, Marwick TH, investigators S. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR trial. JACC Cardiovasc Imaging. 2018;11(8):1098–105.

    Article  PubMed  Google Scholar 

  69. • Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M, et al. Mayo Clin Proc. 2014;89(9):1287–306. Herrmann et al. provide an in-depth review on managing patients who are at risk for adverse cardiovascular outcomes with initiation of chemo/immunotherapy. The authors provide effective strategies for risk stratification, evaluation, periodic monitoring, and treatment. This comprehensive review provides a guide for management of patients with preexisting cardiovascular disease, who are at higher risk for adverse outcomes.

  70. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 2. J Am Coll Cardiol. 2017;70(20):2552–65.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am Coll Cardiol. 2017;70(20):2536–51.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barac A, Murtagh G, Carver JR, Chen MH, Freeman AM, Herrmann J, et al. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol. 2015;65(25):2739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Iliescu CA, Grines CL, Herrmann J, Yang EH, Cilingiroglu M, Charitakis K, et al. SCAI expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the Cardiological Society of India, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter Cardiovasc Interv. 2016;87(5):E202–23.

    Article  PubMed  Google Scholar 

  75. Koutsoukis A, Ntalianis A, Repasos E, Kastritis E, Dimopoulos MA, Paraskevaidis I. Cardio-oncology: a focus on Cardiotoxicity. Eur Cardiol. 2018;13(1):64–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Austin-Mattison C. Joining forces: establishing a cardio-oncology clinic. J Adv Pract Oncol. 2018;9(2):222–9.

    PubMed  PubMed Central  Google Scholar 

  77. • Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. Cardinale et al. describe a prospective cohort study of patients undergoing anthracycline therapy. These patients are administered heart failure therapy and monitored for development of anthracycline-induced cardiomyopathy. The authors conclude that the timing of initiation of heart failure therapy correlates with the degree of cardiac recovery. In short, the earlier cardiomyopathy is identified, and the earlier heart failure therapy is initiated, the higher the likelihood a patient can have complete recovery of cardiac function.

    Article  CAS  PubMed  Google Scholar 

  78. Cardio-oncology: principles and organisational issues. 2019.

  79. Chen JJ, Wu PT, Middlekauff HR, Nguyen KL. Aerobic exercise in anthracycline-induced cardiotoxicity: a systematic review of current evidence and future directions. Am J Physiol Heart Circ Physiol. 2017;312(2):H213–h22.

    Article  PubMed  Google Scholar 

  80. Travier N, Velthuis MJ, Steins Bisschop CN, van den Buijs B, Monninkhof EM, Backx F, et al. Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial. BMC Med. 2015;13:121.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kenjale AA, Hornsby WE, Crowgey T, Thomas S, Herndon JE 2nd, Khouri MG, et al. Pre-exercise participation cardiovascular screening in a heterogeneous cohort of adult cancer patients. Oncologist. 2014;19(9):999–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kirkham AA, Eves ND, Shave RE, Bland KA, Bovard J, Gelmon KA, et al. The effect of an aerobic exercise bout 24 h prior to each doxorubicin treatment for breast cancer on markers of cardiotoxicity and treatment symptoms: a RCT. Breast Cancer Res Treat. 2018;167(3):719–29.

    Article  CAS  PubMed  Google Scholar 

  83. Galetta F, Franzoni F, Cervetti G, Cecconi N, Carpi A, Petrini M, et al. Effect of epirubicin-based chemotherapy and dexrazoxane supplementation on QT dispersion in non-Hodgkin lymphoma patients. Biomed Pharmacother. 2005;59(10):541–4.

    Article  CAS  PubMed  Google Scholar 

  84. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  85. Lopez M, Vici P, Di Lauro K, Conti F, Paoletti G, Ferraironi A, et al. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  86. Venturini M, Michelotti A, Del Mastro L, Gallo L, Carnino F, Garrone O, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol. 1996;14(12):3112–20.

    Article  CAS  PubMed  Google Scholar 

  87. Speyer JL, Green MD, Zeleniuch-Jacquotte A, Wernz JC, Rey M, Sanger J, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10(1):117–27.

    Article  CAS  PubMed  Google Scholar 

  88. Marty M, Espie M, Llombart A, Monnier A, Rapoport BL, Stahalova V. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17(4):614–22.

    Article  CAS  PubMed  Google Scholar 

  89. Wexler LH, Andrich MP, Venzon D, Berg SL, Weaver-McClure L, Chen CC, et al. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol. 1996;14(2):362–72.

    Article  CAS  PubMed  Google Scholar 

  90. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15(4):1318–32.

    Article  CAS  PubMed  Google Scholar 

  91. Ganatra S, Nohria A, Shah S, Groarke JD, Sharma A, Venesy D, et al. Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardio-Oncology. 2019;5(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sun F, Qi X, Geng C, Li X. Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am J Med Sci. 2015;349(5):406–12.

    Article  PubMed  Google Scholar 

  93. Kim IH, Lee JE, Youn HJ, Song BJ, Chae BJ. Cardioprotective effect of dexrazoxane in patients with HER2-positive breast cancer who receive anthracycline based adjuvant chemotherapy followed by trastuzumab. J Breast Cancer. 2017;20(1):82–90.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tahover E, Segal A, Isacson R, Rosengarten O, Grenader T, Gips M, et al. Dexrazoxane added to doxorubicin-based adjuvant chemotherapy of breast cancer: a retrospective cohort study with a comparative analysis of toxicity and survival. Anti-Cancer Drugs. 2017;28(7):787–94.

    Article  CAS  PubMed  Google Scholar 

  95. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58. United States:988–9.

    Article  PubMed  Google Scholar 

  96. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.

    Article  CAS  PubMed  Google Scholar 

  97. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6.

    Article  CAS  PubMed  Google Scholar 

  99. Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62.

    Article  CAS  PubMed  Google Scholar 

  100. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8.

    Article  CAS  PubMed  Google Scholar 

  101. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306–10.

    Article  PubMed  Google Scholar 

  102. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  103. Wickramasinghe CD, Nguyen KL, Watson KE, Vorobiof G, Yang EH. Concepts in cardio-oncology: definitions, mechanisms, diagnosis and treatment strategies of cancer therapy-induced cardiotoxicity. Future Oncol. 2016;12(6):855–70.

    Article  CAS  PubMed  Google Scholar 

  104. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008;2:Cd003917.

    Google Scholar 

  105. Macedo AVS, Hajjar LA, Lyon AR, Nascimento BR, Putzu A, Rossi L, et al. 2019.

  106. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49(13):2900–9.

    Article  CAS  PubMed  Google Scholar 

  107. Akolkar G, Bhullar N, Bews H, Shaikh B, Premecz S, Bordun KA, et al. The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity. Cardiovasc Ultrasound. 2015;13:18.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Milgrom SA, Varghese B, Gladish GW, Choi AD, Dong W, Patel ZS, et al. Coronary artery dose-volume parameters predict risk of calcification after radiation therapy. J Cardiovasc Imaging. 2019;27(4):268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bekelman JE, Lu H, Pugh S, Baker K, Berg CD, Gonzalez ABd, et al. Pragmatic randomised clinical trial of proton versus photon therapy for patients with non-metastatic breast cancer: the Radiotherapy Comparative Effectiveness (RadComp) Consortium trial protocol. 2019.

  110. Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, et al. Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. Circulation. 2015;132(23):2248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Carnevale R, Lanzetta G, Biondi-Zoccai G, Frati G. Chemotherapy, cardiovascular disease and precision medicine: toward truly individualized treatment for precision cardio-oncology? Int J Cardiol. 2019;280:198–9.

    Article  PubMed  Google Scholar 

  112. Dreyfuss AD, Bravo PE, Koumenis C, Ky B. Precision cardio-oncology. J Nucl Med. 2019;60(4):443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 2017;1(1):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Martin A, Downing J, Maden M, Fleeman N, Alfirevic A, Haycox A, et al. An assessment of the impact of pharmacogenomics on health disparities: a systematic literature review. Pharmacogenomics. 2017;18(16):1541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gray M, Lagerberg T, Dombradi V. Equity and value in ‘precision medicine’. New Bioeth. 2017;23(1):87–94.

    Article  PubMed  Google Scholar 

  117. Armstrong K. Equity in precision medicine: is it within our reach? J Natl Compr Canc Netw. 15. United States2017. p. 421–3.

  118. Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int J Radiat Oncol Biol Phys. 2015;93(5):1127–35.

    Article  PubMed  Google Scholar 

  119. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

    Article  CAS  PubMed  Google Scholar 

  121. Administration UFD. 2015-2016 global participation in clinical trial report 2019 [cited 2017 July].

  122. •• Duma N, Vera Aguilera J, Paludo J, Haddox CL, Gonzalez Velez M, Wang Y, et al. Representation of minorities and women in oncology clinical trials: review of the past 14 years. J Oncol Pract. 2018;14(1):e1–e10. Duma et al. conduct a survey of 1012 clinical trials and find that only 31% report ethnicity. Their finding of decreased recruitment of minorities over the past 14 years highlights a key reason for disparities in cardio-oncology: exclusion of minorities from clinical research. This study provides objective data on this key problem.

    Article  PubMed  Google Scholar 

  123. Participation of African American persons in clinical trials supporting U.S. Food and Drug Administration approval of cancer drugs. 2020. https://doi.org/10.7326/M20-0410.

  124. Yes, Virginia, Digital Health Can Transform Clinical Trials AND Advance Equity - Massachusetts Biotechnology Council 2019 [Available from: https://www.massbio.org/news/blog/yes-virginia-digital-health-can-transform-clinical-trials-and-advance-equity-149865. Accessed 31 Oct 2019.

  125. Brewer LC, Hayes SN, Jenkins SM, Lackore KA, Breitkopf CR, Cooper LA, et al. Improving cardiovascular health among African-Americans through mobile health: the FAITH! App pilot study. J Gen Intern Med. 2019;34(8):1376–8.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brewer LC, Jenkins S, Lackore K, Johnson J, Jones C, Cooper LA, et al. mHealth intervention promoting cardiovascular health among African-Americans: recruitment and baseline characteristics of a pilot study. JMIR Res Protoc. 2018;7(1):e31.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Brewer LC, Hayes SN, Caron AR, Derby DA, Breutzman NS, Wicks A, et al. Promoting cardiovascular health and wellness among African-Americans: community participatory approach to design an innovative mobile-health intervention. PLoS One. 2019;14(8):e0218724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Abbott DE, Voils CL, Fisher DA, Greenberg CC, Safdar N. Socioeconomic disparities, financial toxicity, and opportunities for enhanced system efficiencies for patients with cancer. J Surg Oncol. 2017;115(3):250–6.

    Article  PubMed  Google Scholar 

  129. Rivers BM, Bernhardt JM, Fleisher L, Green BL. Opportunities and challenges of using technology to address health disparities. Future Oncol. 2014;10(4):519–22.

    Article  CAS  PubMed  Google Scholar 

  130. Ray R, Sewell AA, Gilbert KL, Roberts JD. Missed opportunity? Leveraging mobile technology to reduce racial health disparities. J Health Polit Policy Law. 2017;42(5):901–24.

    Article  PubMed  Google Scholar 

  131. Widmer RJ, Allison TG, Lerman LO, Lerman A. Digital health intervention as an adjunct to cardiac rehabilitation reduces cardiovascular risk factors and rehospitalizations. J Cardiovasc Transl Res. 2015;8(5):283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Manjunath C, Ifelayo O, Jones C, et al. Addressing cardiovascular health disparities in Minnesota: Establishment of a community steering committe by FAITH! (Fostering Africa-American Improvement in Total Health). Int J Environ Res Public Health. 2019;16(21):4144. https://doi.org/10.3390/ijerph16214144.

  133. Brewer LC, Kaihoi B, Schaepe K, Zarling K, Squires RW, Thomas RJ, et al. Patient-perceived acceptability of a virtual world-based cardiac rehabilitation program. Digit Health. 2017;3:2055207617705548.

    PubMed  PubMed Central  Google Scholar 

  134. Gaalema DE, Elliott RJ, Savage PD, Rengo JL, Cutler AY, Pericot-Valverde I, et al. Financial incentives to increase cardiac rehabilitation participation among low-socioeconomic status patients: a randomized clinical trial. JACC Heart Fail. 2019;7(7):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14. England:61–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry-Ann Brown.

Ethics declarations

Conflict of Interest

Sherry-Ann Brown, Pooja Prasad, Daniel Asemota, Razan Elsayed, and Daniel Addison declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Race and Ethnicity Disparities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, P., Branch, M., Asemota, D. et al. Cardio-Oncology Preventive Care: Racial and Ethnic Disparities. Curr Cardiovasc Risk Rep 14, 18 (2020). https://doi.org/10.1007/s12170-020-00650-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-020-00650-8

Keywords

Navigation