Skip to main content

Advertisement

Log in

Effect of Nitrogen Fertilization and Residual Nitrogen on Biomass Yield of Switchgrass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass, Panicum virgatum L., grown for biomass has been extensively researched where the annual precipitation >760 mm and the climate varies from humid to moist-subhumid. Research is needed for areas that receive <700 mm of precipitation, where the climate varies from dry-subhumid to semiarid. The objectives were to determine (1) the effect of nitrogen fertilization on biomass production, (2) the effect of residual nitrogen on biomass production, (3) the nitrogen yield from harvested biomass, and (4) the concentration of soil organic carbon (SOC) from switchgrass plots. Plots were fertilized annually with nitrogen at the rates of 0, 40, 80, and 120 kg ha−1 from 2008 to 2011 and unfertilized from 2012 to 2015. The biomass yield varied with N rate × production year interactions (P < 0.05), and biomass yield as a function of N rate was either linear or curvilinear depending upon production year. When fertilized, the biomass yield averaged 4.4, 9.4, 11.6, and 13.2 ± 0.4 Mg ha−1 for the 0, 40, 80, and 120 kg ha−1 N rates, respectively. Residual nitrogen sustained high biomass yields for 1 year after fertilization ceased. The nitrogen harvested in biomass varied with N rate × production year interactions (P < 0.05), and the harvested nitrogen yield as a function of N rate was linear each year. Fertilization increased the concentration of SOC an average of 1.0 ± 0.2 mg g−1 of soil. The data suggest that producers could occasionally skip a year of nitrogen fertilization without detrimentally impacting the production of switchgrass biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

USDA:

US Department of Agriculture

SOC:

Soil organic carbon

N:

Nitrogen

P:

Phosphorus

K:

Potassium

References

  1. Barkworth ME, Anderson LK, Carpels KM, Long S, Piep MB (2007) Manual of grasses of North America. Utah State University Press, Logan

    Google Scholar 

  2. Penfound WT (1964) Effects of denudation on the productivity of grassland. Ecology 45:838–845. doi:10.2307/1934929

    Article  Google Scholar 

  3. Cornelius DR (1944) Revegetation in the tall grass prairie region. J Amer Soc Agron 36:393–400. doi:10.2134/agronj1944.00021962003600050003x

    Article  Google Scholar 

  4. Alderson J, Sharp WC (1994) Grass varieties in the United States. USDA-SCS, USDA Agric Handb 170, Washington, DC. doi:10.5962/bhl.title.97052

  5. Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (ed) Warm-season (C4) grasses. USA. Madison, Wisconsin: ASA, CSSA, SSSA, pp 561–588

  6. Harlan, JR, Ahring, RM (1958) Caddo switchgrass. Oklahoma Agric Exp Sta, Bull. B-516, Stillwater, Oklahoma

  7. Berg CC (1971) Forage yield of switchgrass (Panicum virgatum) in Pennsylvania. Agron J 63:785–786. doi:10.2134/agronj1971.00021962006300050038x

    Article  Google Scholar 

  8. McMurphy WE, Denman CE, Tucker BB (1975) Fertilization of native grass and weeping lovegrass. Agron J 67:233–236. doi:10.2134/agronj1975.00021962006700020015x

    Article  Google Scholar 

  9. Akin DE, Wilson JR, Windham WR (1983) Site and rate of tissue digestion in leaves of C3, C4, and C3/C4 intermediate Panicum species. Crop Sci 23:147–155. doi:10.2135/cropsci1983.0011183X002300010042x

    Article  Google Scholar 

  10. Akin DE, Brown RH, Rigsby LL (1984) Digestion of stem tissue in Panicum species. Crop Sci 24:769–773. doi:10.2135/cropsci1984.0011183X002400040033x

    Article  Google Scholar 

  11. Gabrielsen BC, Vogel KP, Anderson BE, Ward JK (1990) Alkali-labile lignin phenolics and forage quality in three switchgrass strains selected for differing digestibility. Crop Sci 30:1313–1320. doi:10.2135/cropsci1990.0011183X003000060032x

    Article  CAS  Google Scholar 

  12. Cornelius DR (1950) Seed production of native grasses under cultivation in eastern Kansas. Ecol Monogr 20:1–29. doi:10.2307/1943521

    Article  Google Scholar 

  13. Harlan JR, Kneebone WR (1953) Effect of various methods and rates of nitrogen application on seed yield of switchgrass (Panicum virgatum L.) Agron J 45:385–386. doi:10.2134/agronj1953.00021962004500080011x

    Article  Google Scholar 

  14. Kassel PC, Mullen RE, Bailey TB (1985) Seed yield response of three switchgrass cultivars for different management practices. Agron J 77:214–218. doi:10.2134/agronj1985.00021962007700020010x

    Article  Google Scholar 

  15. Vogel KP (1987) Seeding rates for establishing big bluestem and switchgrass with preemergence atrazine applications. Agron J 79:509–512. doi:10.2134/agronj1987.00021962007900030021x

    Article  CAS  Google Scholar 

  16. Aiken GE, Springer TL (1995) Seed size distribution, germination, and emergence of 6 switchgrass cultivars. J Range Manag 48:455–458. doi:10.2307/4002252

    Article  Google Scholar 

  17. Zheng-Xing S, Parrish DJ, Wolf DD, Welbaum GE (2001) Stratification in switchgrass seed is reversed and hastened by drying. Crop Sci 41:1546–1551. doi:10.2135/cropsci2001.4151546x

    Article  Google Scholar 

  18. Dwyer DD, Elder WC (1964) Grazing comparisons of Woodward sand bluestem and Caddo switchgrass in Oklahoma. Oklahoma Agric Exp Sta, Bull. B-628, Stillwater, Oklahoma

  19. Krueger CR, Curtis DC (1979) Evaluation of big bluestem, indiangrass, side-oats grama, and switchgrass pastures with yearling steers. Agron J 71:480–482. doi:10.2134/agronj1979.00021962007100030024x

    Article  Google Scholar 

  20. Burns JC, Mochrie RD, Timothy DH (1984) Steer performance from two perennial Pennisetum species, switchgrass, and a fescue—‘Coastal’ bermudagrass system. Agron J 76:795–800. doi:10.2134/agronj1984.00021962007600050020x

    Article  Google Scholar 

  21. Anderson B, Ward JK, Vogel KP, Ward MG, Gorz HJ, Haskins FA (1988) Forage quality and performance of yearlings grazing switchgrass strains selected for differing digestibility. J Animal Sci 66:2239–2244. doi:10.2527/jas1988.6692239x

    Article  Google Scholar 

  22. Sanderson MA, Reed RL, Ocumpaugh WR, Hussey MA, Van Esbroeck G, Read JC, Tischler CR, Hons FM (1999) Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresource Techno 67:209–219. doi:10.1016/S0960-8524(98)00132-1

    Article  CAS  Google Scholar 

  23. Sanderson MA, Read JC, Reed RL (1999) Harvest management of switchgrass for biomass feedstock and forage production. Agron J 91:5–10. doi:10.2134/agronj1999.00021962009100010002x

    Article  Google Scholar 

  24. Muir JP, Sanderson MA, Ocumpaugh WR, Jones RM, Reed RL (2001) Biomass production of ‘Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron J 93:896–901. doi:10.2134/agronj2001.934896x

    Article  Google Scholar 

  25. Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron J 94:413–420. doi:10.2134/agronj2002.0413

    Article  Google Scholar 

  26. Casler MD, Boe AR (2003) Cultivar × environment interactions in switchgrass. Crop Sci 43:2226–2233. doi:10.2135/cropsci2003.2226

    Article  Google Scholar 

  27. Berdahl JD, Frank AB, Krupinsky JM, Carr PM, Hanson JD, Johnson HA (2005) Biomass yield, phenology, and survival of diverse switchgrass cultivars and experimental strains in western North Dakota. Agron J 97:549–555. doi:10.2134/agronj2005.0549

    Article  Google Scholar 

  28. Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumpaugh WR (2005) Biomass yield and stand characteristics of switchgrass in south central U.S. environments. Crop Sci 45:673–681. doi:10.2135/cropsci2005.0673

    Article  Google Scholar 

  29. Lee DK, Boe A (2005) Biomass production of switchgrass in central South Dakota. Crop Sci 45:2583–2590. doi:10.2135/cropsci2005.04-0003

    Article  Google Scholar 

  30. Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung HJG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall and spring. Agron J 98:1518–1525. doi:10.2134/agronj2005.0351

    Article  CAS  Google Scholar 

  31. Kering MK, Biermacher JT, Butler TJ, Mosali J, Guretzky JA (2012) Biomass yield and nutrient response of switchgrass to phosphorus application. Bioenerg Res 5:71–78. doi:10.1007/s12155-011-9174-y

    Article  CAS  Google Scholar 

  32. Lemus R, Parrish DJ, Abaye O (2008) Nitrogen-use dynamics in switchgrass grown for biomass. Bioenerg Res 1:153–162. doi:10.1007/s12155-008-9014-x

    Article  Google Scholar 

  33. Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2012) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenerg Res 5:61–70. doi:10.1007/s12155-011-9167-x

    Article  Google Scholar 

  34. Garten CT Jr, Wullschleger SD (1999) Soil carbon inventories under a bioenergy crop (switchgrass): measurement limitations. J Environ Qual 28:1359–1365. doi:10.2134/jeq1999.00472425002800040041x

    Article  CAS  Google Scholar 

  35. Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44:1391–1396. doi:10.2135/cropsci2004.1391

    Article  CAS  Google Scholar 

  36. Liebig MA, Johnson HA, Hanson JD, Frank AB (2005) Soil carbon under switchgrass stands and cultivated cropland. Biomass Bioenergy 28:347–354. doi:10.1016/j.biombioe.2004.11.004

    Article  CAS  Google Scholar 

  37. Liebig MA, Schmer MR, Vogel KP, Mitchell RB (2008) Soil carbon storage by switchgrass grown for bioenergy. Bioenerg Res 1:215–222. doi:10.1007/s12155-008-9019-5

    Article  Google Scholar 

  38. Barney JN, Mann JJ, Kyser GB, Blumwald E, Deynze AV, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732. doi:10.1016/j.plantsci.2009.09.003

    Article  CAS  Google Scholar 

  39. Epplin FM (1996) Cost to produce and deliver switchgrass biomass to an ethanol-conversion facility in the Southern Plains of the United States. Biomass Bioenergy 11:459–467. doi:10.1016/S0961-9534(96)00053-0

    Article  Google Scholar 

  40. Perrin R, Vogel KP, Schmer M, Mitchell R (2008) Farm-scale production cost of switchgrass for biomass. Bioenerg Res 1:91–97. doi:10.1007/s12155-008-9005-y

    Article  Google Scholar 

  41. Mooney DF, Roberts RK, English BC, Tyler DD, Larson JA (2009) Yield and breakeven price of ‘Alamo’ switchgrass for biofuel in Tennessee. Agron J 101:1234–1242. doi:10.2134/agronj2009.0090

    Article  Google Scholar 

  42. Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303. doi:10.2135/cropsci2004.2930

    Article  Google Scholar 

  43. Harlan JR (1960) Production characteristic of Oklahoma forages. Native range. Oklahoma Agric Exp Sta Bull B-547, Stillwater, Oklahoma

  44. Wilson DM, Heaton EA, Liebman M, Moore KJ (2013) Intraseasonal changes in switchgrass nitrogen distribution compared with corn. Agron J 105:285–294. doi:10.2134/agronj2012.0233

    Article  CAS  Google Scholar 

  45. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30. doi:10.1016/j.biombioe.2003.10.005

    Article  Google Scholar 

  46. Weaver JE (1968) Prairie plants and their environment: a fifty-year study in the Midwest. University of Nebraska Press, Lincoln

    Google Scholar 

  47. McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14:317–324. doi:10.1016/S0961-9534(97)10066-6

    Article  CAS  Google Scholar 

  48. Sauer CO (1941) The settlement of the humid east. In: Climate and man, 1941 yearbook of agriculture. U.S. Government Printing Office, Washington D.C., pp 157–166

    Google Scholar 

  49. Trewartha GT (1941) Climate and settlement of the subhumid lands. In: Climate and man, 1941 yearbook of agriculture. U.S. Government Printing Office, Washington D.C., pp 167–176

    Google Scholar 

  50. Thornthwaite CW (1941) Climate and settlement in the Great Plains. In: Climate and man, 1941 yearbook of agriculture. U.S. Government Printing Office, Washington D.C., pp 177–187

    Google Scholar 

  51. Sims JT (1996) Lime requirement. In: Sparks DL (ed) Methods of soil analysis, part 3, Chemical methods, SSSA Book Ser, vol 5. SSSA and ASA, Madison, Wisconsin, pp 491–515

    Google Scholar 

  52. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci & Plant Anal 15:1409–1416. doi:10.1080/00103628409367568

    Article  CAS  Google Scholar 

  53. SAS Institute, Inc (2010) SAS/STAT® user’s guide, Version 9.22, Cary, North Carolina, USA

  54. Springer TL, Dewald CL, Sims PL, Gillen RL (2003) How does plant population density affect the forage yield of eastern gamagrass? Crop Sci 43:2206–2211. doi:10.2135/cropsci2003.2206

    Article  Google Scholar 

  55. Sharpley AN, Smith SJ, Menzel RG, Westerman RL (1985) The chemical composition of rainfall in the Southern Plains and its impact on soil and water quality. Oklahoma Agric Exp Sta Tech. Bull T-162, Stillwater, Oklahoma

  56. Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Critical Rev Plant Sci 13:241–273. doi:10.1080/07352689409701916

    Article  CAS  Google Scholar 

  57. Stroup JA, Sanderson MA, Muir JP, McFarland MJ, Reed RL (2003) Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresource Techno 86:65–72. doi:10.1016/S0960-8524(02)00102-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the USDA Agricultural Research Service. All programs and services of the USDA are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by USDA and does not imply approval to the exclusion of other suitable products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim L. Springer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Springer, T.L. Effect of Nitrogen Fertilization and Residual Nitrogen on Biomass Yield of Switchgrass. Bioenerg. Res. 10, 648–656 (2017). https://doi.org/10.1007/s12155-017-9827-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9827-6

Keywords

Navigation