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Abstract Lignocellulosic biomass from sugarcane
(Saccharum spp. hybrids) could potentially be a major
feedstock for second-generation biofuel production.
Consequently, selecting sugarcane varieties with favorable
biomass characteristics, typically less enzymatic recalci-
trance and better saccharification yield without sugar-
yield penalty, will be important in sugarcane breeding.
Economical and high-throughput techniques for profiling
the major biomass components of this complex system will
facilitate selection of clones with ideal lignocellulosic
composition from large numbers of genotypes in breeding
programs. We used a combined high-throughput profiling
approach to evaluate the biomass composition of samples
from a sugarcane germplasm collection. This employed
near-infrared (NIR) spectroscopy for fiber characterization
and high-performance liquid chromatography (HPLC) for
determining the sugar content in juice. The results for 331
samples, from a diverse sugarcane population of 186 ge-
notypes, derived from 143 parents of different genetic
backgrounds, showed that high-quality NIR spectroscopic
predictions were feasible for cellulose, hemicellulose, lig-
nin, and extractives values in fiber, and sugars in juice
were suitably analyzed by HPLC. The analysis of total

biomass indicated that this NIR- and HPLC-based high-
throughput method allowed a robust phenotypic assess-
ment of a large number of samples for the key biomass
traits in the sugarcane system, including total dry biomass,
fiber, sugar content, and theoretical ethanol yields, and
could potentially become the method of choice for sugar-
cane germplasm screening in breeding programs targeting
the support of biofuel production.
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Introduction

Due to the depletion of nonrenewable liquid fossil fuels, pro-
duction of biofuels from plant biomass has been emphasized
in recent years. While first-generation biofuels use the food
parts of the plants such as starch, sugar, and oil to produce
ethanol, the emerging second-generation biofuels have been
generated from the cell-wall-derived biomass (also referred to
as lignocellulosic biomass) and other nonfood parts of the
plants [1, 2]. Sugarcane is a very important industrial crop in
tropical and subtropical countries. It has been selected as a
candidate for biofuel production due to its exceptional capac-
ity to produce biomass in a short time compared to other
biomass-producing plants such as switch grass, Miscanthus,
Erianthus, and woody candidates such as eucalypts reviewed
in [3]. A dual-purpose sugarcane system, for sugar and ligno-
cellulosic biomass production, stands out from other feedstock
options because its breeding, cultivation, production and pro-
cessing facilities have been well established and are already in
place. Sugar and lignocellulosic biomass from sugarcane can
be produced simultaneously, on the same land area [4] and
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with the same input costs. Approximately 1.9 billion tons of
sugarcane biomass is produced each year [5], which contains
about 580 million dry tons of lignocellulosic biomass that
could be used as a feedstock for the production of second-
generation biofuels [6].

To maximize the conversion efficiency of sugarcane bio-
mass to biofuels, it is imperative to have sugarcane genotypes
with improved total biomass: more cellulose and less lignin,
resulting in less enzymatic recalcitrance and better saccharifi-
cation yield. Achieving this requires that we first understand
the genetic basis of the key biomass traits. Association studies
have been emerging as a method of choice in dissecting com-
plex traits, and could potentially allow better understanding of
the genes underpinning biomass traits and relationships be-
tween them, as outlined in our review [3]. To carry out a
large-scale association study, a population of sugarcane of
genetic variability in the targeted traits is required for pheno-
typing and genotyping [7]. Phenotyping for association stud-
ies necessitates the costly assessment of hundreds to thou-
sands of samples from a large number of accessions collected
over several years and from several locations [8–10]. Hence, it
is costly to generate a phenotypic dataset of sufficient size.
The traits targeted for biofuel research are constituents of the
lignocellulosic fraction (cellulose, hemicellulose, lignin) and
sugars (mostly sucrose). A complete and accurate set of phe-
notypic data allows reliable dissection of the relationship be-
tween these traits and the genes controlling them.

Cellulose, hemicellulose and lignin are important constitu-
ents of the lignocellulosic biomass (or of the total fiber frac-
tion), and therefore are normally characterized for biofuel re-
search [4, 11, 12]. In fiber characterization, a high-throughput
method to assess and screen a large number of lignocellulosic
feedstocks is required to replace the expensive, time-consum-
ing, and tedious chemical composition analysis techniques. To
date, there are a range of available methods for assessment of
lignocellulosic biomass reviewed in [13]. Among the avail-
able platforms, near-infrared (NIR) spectroscopy-based
methods have been used widely for assessing biomass since
they offer nondestructive analysis (reducing hazardous risks
and allowing samples to be re-used for other purposes), a
relatively low cost per sample and require minimal technical
skill reviewed in [13–15]. To develop NIR spectroscopic
models, paired spectra and reference values (obtained through
traditional analytical methods) are combined using chemo-
metric technique partial least squares (PLS) regression.
Applying these models to an at-line analyzer allows rapid,
high-throughput prediction of lignocellulosic constituents for
new samples [16]. The prediction of biomass composition
using NIR spectral data has been developed for many species,
such asMiscanthus [17], switchgrass [18], poplar [19], sugar-
cane (on three selected genotypes) [11], and in broad-based
multispecies models (including corn, sorghum, rice, and
wheat) [16]. In the Australian sugarcane industry, NIR

spectroscopic models have been developed for evaluation of
many sugar mill products, such as prepared cane, bagasse, raw
sugar, molasses, juice and syrups, massecuite, magma, and
mud [4, 12, 20]. Additionally, fibrated cane (whole stalk) is
analyzed in the field environment with SpectraCane (Biolab,
Australia), an integrated at-line analyzer comprising a shred-
der to homogenize cane stalks into a fiber, conveyer, and sam-
ple presentation component, and an NIR spectroscopic instru-
ment, as described in [21, 22]. High-performance liquid chro-
matography (HPLC) is a well-established system for quanti-
fying and profiling sugars in sugarcane juice [23, 24].
Combination of the juice characterization, provided by
HPLC, and fiber characterization, provided by NIR spectros-
copy, gives a comprehensive profile of all phenotypic factors
contributing to the total biomass for genetic studies. A com-
plete data of sugar and fiber content in the biomass across a
given population would allow to estimate the theoretical eth-
anol yield, and hence, the potential for biofuel production, as
illustrated in [25].

The aims of this study were to (i) explore the potential and
evaluate the robustness of a combined high-throughput ap-
proach based upon NIR spectroscopy for fiber characteriza-
tion and HPLC for sugar analysis in assessing sugarcane bio-
mass traits, (ii) systematically profile the biomass composition
and ethanol yield potential of a sugarcane germplasm collec-
tion, and (iii) establish a method to determine the fiber/sugar
ratio in sugarcane genotypes, as a phenotyping tool for sugar-
cane biofuel research.

Materials and Methods

Biomass Sample Collection

This study was based on 331 samples, derived from 186 sug-
arcane genotypes from a population with partial duplicates,
triplicates, and three control genotypes (Q200, Q208, and
KQ228) with six replicates each. These were grown in
Sugar Research Australia (SRA) field trials at their Brandon
Station in the Burdekin region of Queensland, Australia. Six
millable stalks from each sugarcane sample were collected
after leaves and green tops were removed. The following pro-
cessing occurred within 1 h of sample collection. The stalks
were fed into the SpectraCane (Biolab, Australia) NIR analy-
sis system, which automatically shreds the cane and collects
an NIR spectrum using a Bruker Matrix-F NIR spectropho-
tometer (Bruker, Billerica, MA, USA). This system provided a
prediction for total fiber content, juice pol, juice brix, and
commercial cane sugar (CCS), which was based on analysis
of the collected spectral data using the calibration models
previously developed for the whole stalk samples. For fiber
composition prediction in this study, a second NIR spectrum
was collected on the pressed fiber samples, using a different
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NIR spectroscopic instrument, a Foss XDS, described in the
next section. Following sample preparation and analysis by
SpectraCane, 400 g of the well-mixed shredded cane of each
sample was transferred to a canister and pressed using a
Carver mechanical press auto M series (Carver, Inc.,
Wabash, IN, USA) at 20,000 lb per inch (psi) for 45 s to obtain
the juice and a pressed fiber cake (referred to as pressed fiber).
This pressed fiber was weighed and referred to as pressed fiber
fresh weight in total biomass calculation. Approximately
50 ml of the juice was collected into a 50-ml Falcon tube,
and the remainder was discarded. The collected juice and
pressed fiber samples were stored at −20 °C until further
analysis.

Fiber Sample Characterization

Sample Preparation and NIR Spectral Data Acquisition

Pressed fiber sample preparation and analysis was undertaken
as follows, using protocols adapted from those developed by
the US National Renewable Energy Laboratory (NREL) [26].
The pressed fiber was removed from the freezer and thawed at
room temperature for 1 h. Once completely thawed, the sam-
ple was spread over a flat seedling tray lined with paper and
mixed thoroughly. NIR spectral data (400 to 2500 nm with
0.5-nm data spacing) was collected using a Foss XDS with
Rapid Content Analyzer (Foss NIRSystems, Hillerød,
Denmark) and a moving solids module. Subsequently, the
pressed fiber sample was dried overnight in an oven at
42 °C, until a constant mass was recorded. This value is re-
ferred to as pressed fiber dry weight. The dried samples were
ground using a Retsch grinder (Retsch, Haan, Germany) with
1.5 mm sieve plate set in a reverse position to produce a fine
and homogenous particle size. Each finely ground sample
(25 g) was sieved in a shaker (Endecotts Ltd., London,
England) for 20 min, and the 180–350-μm fraction was
retained and stored at 4 °C until further analysis.

Selecting Samples for Compositional Analysis by Traditional
Methods

Sample selection for chemical composition analysis was com-
pleted using the Kennard-Stone algorithm [27] in the
Unscrambler X software, version 10.3 (Camo, Inc., Oslo,
Norway). Of the original pool of 331 samples, 20 samples
were selected based on the even distribution of their spectra
in multivariate space [16]. An additional ten samples were
selected manually from the pool by evaluating the predicted
fiber content generated from the SpectraCane prediction, in
combination with the sample dry weight data. This was to
increase the number of selected samples specifically represent
the population from low to high fiber genotypes. The 30

samples selected by these methods were subjected to compo-
sitional analysis and used to calibrate the NIR models.

Compositional Analysis by Traditional Analytical Methods

Compositional analysis of the selected samples was conducted
for cellulose, hemicellulose, lignin, ash, and extractives, using
the NREL methods, modified for sugarcane fiber [26, 28].
Prior to analysis, the ground and sieved fiber was dried in an
oven for at least 5 h to a constant weight at 105 °C, to remove
the moisture absorbed during storage. The ground and sieved
fiber was extracted sequentially with water and 100 % ethanol
using an accelerated solvent extractor (ASE 350, Dionex,
Sunnyvale, CA, USA). The settings for the ASE 350 were
as follows: for water extraction (3 cycles): preheating 1 min,
heating 5 min, pressure 1000 psi, temperature 80 °C, static
7 min, flush% 150 V, purge 120 s; ethanol extraction (3 cy-
cles): preheating 1 min, heating 5 min, pressure 1000 psi,
temperature 90 °C, static 7 min, flush% 150 V, purge 120 s.
The total extractables in the sample were determined by sub-
sequent quantitative recovery of the residue using a rotary
evaporator at 40 °C. The extractives-free fiber was dried at
40 °C in a vacuum oven for at least 12 h to ensure evaporation
of all residual solvent. Then, the dry extractives-free fiber was
subjected to a two-stage sulfuric acid hydrolysis procedure
(30 °C/72 % H2SO4/1 h) and (121 °C/4 % H2SO4/1 h). The
first hydrolysis was completed at atmospheric pressure, while
the second hydrolysis step was performed under high-pressure
conditions at 20 psi in an autoclave. The hydrolysate was
filtered by vacuum filtration and two fractions were obtained,
filtrate and the solids. The acid-soluble lignin (ASL) compo-
nent in the filtrate was determined by UV-visible spectroscopy
at 320 nm. The acid-insoluble lignin (AIL) component was
estimated from the total weight of dried solids (determined
from drying at 105 °C) after subtracting the acid-insoluble
ash content, which was determined by incinerating the solids
at 575 °C. Total lignin was the sum of ASL and AIL. For
structural cellulose and hemicellulose determination, the fil-
trate was neutralized with calcium carbonate and diluted be-
fore injecting into a Dionex HPLC system controlled by
Chromeleon software (Dionex, Sunnyvale, CA, USA).
Sugar standards, including glucose, arabinose, galactose, xy-
lose, and mannose, were used to calibrate the sugars in the
filtrate and fucose was used as an internal standard in all sam-
ple injections. The cellulose content was calculated from glu-
cose and the hemicellulose content was calculated by adding
individual results for arabinose, galactose, xylose, and man-
nose. Total ash content determination was performed by in-
cinerating the dried sample using a muffle furnace at 575 °C,
and the weight of the crucible containing the sample, before
and after incineration, was used to calculate the ash content.
All samples were analyzed in duplicate. The chemical com-
positional analysis results were quoted on a % dry mass
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(%DM) basis or % extractives-free (%EF) basis in the pressed
fiber fraction, in which the difference between these two
expressed values was the amount of extractable materials re-
maining in the samples. For the NIR spectroscopic calibration
model, the data on a %DM basis was used, as it is mentioned
in [28] that models developed on this type of data typically
showed an improved performance.

NIR Spectroscopic Model Development and Prediction

The analytical reference data and NIR spectroscopic data for
the 30 selected samples were added to an existing database of
sugarcane stalk and bagasse, previously reported in [28], to
generate a calibration dataset of 300 samples. Tomaximize the
number of samples available for developing the calibration
models, all replicates in chemical composition analysis were
treated as individual samples (approximately 600 individual
samples). The spectral data was analyzed using first derivative
or second derivative (Savitzky–Golay) transformation with
14-point smoothing to correct the variation in the baseline,
and with standard normal variate (SNV) for scatter correction.
Data was checked for outliers using principal component anal-
ysis (PCA). Partial least squares (PLS-1) regression models
were developed for cellulose, hemicellulose, lignin, and ex-
tractives content using Unscrambler X 10.3. We applied two
levels of model development in this study. At first, a calibra-
tion with an external validation set (of 152 samples, making a
total of 452 validation samples) was performed to get an as-
sessment of potential predictive performance of the models.
This was followed by a cross-validation model using all avail-
able data, to maximize the variability captured in the dataset.
The cross-validated model was used for the prediction of un-
knowns. To assess the predictive performance of the external-
ly validated calibration models, a subset of each of the prod-
ucts (whole stalk, pressed fiber, and bagasse) were removed
prior to model development and used as an independent val-
idation set. The coefficient of determination (R2), root mean
standard error of calibration (RMSEC), and root mean stan-
dard error of prediction (RMSEP) were used to evaluate the
performance of the models. Again, to maximize the number of
samples in the calibration and improve the predictive perfor-
mance, the models were recalculated using all of the available
data, with only cross-validation. Experience has shown that
this combination of model development will give the best
possible predictive models while providing an indicative
RMSEP, despite the low sample numbers. The cellulose,
hemicellulose, lignin, and extractives content in the unknown
samples were predicted using the cross-validated models.

Analysis of Soluble Sugars in Juice

The frozen juice samples were thawed at room temperature for
1 h and mixed thoroughly. A 2 mL aliquot of each juice

sample was transferred to a 2-mL tube and heated on a water
bath at 98 °C for 10 min. The sample was centrifuged at
15,000×g for 15 min and 50 μL of the supernatant, collected
from 3 mm below the surface of the sample, was diluted 20
times by transferring to a new tube containing 950 μLMilli-Q
water. This process was repeated three times, resulting in the
original sample being diluted 8000 times. A further 1:1 dilu-
tion was undertaken with 500 μL of degassed Milli-Q water,
making the final solution a dilution of 16,000 times to that of
the original sample solution. The final diluted solution (1 mL)
was transferred to a 96-well plate and subjected to analysis
using a Dionex BioLC system DX 600 (Dionex, Sunnyvale,
CA, USA). Sucrose, glucose, and fructose concentrations
were measured at high pH (85 mM L−1 KOH), with a PA20
analytical anion exchange column and calibration with sugar
standards as described byWu and Birch [24]. Sugar standards
used for calibration were in a dilution series ranging 1–150, 3–
300, and 1–150 mM for sucrose, fructose, and glucose, re-
spectively. The sugar concentration in the sample was adjust-
ed for the dilution factor using Chromeleon Client software
Version 6.8 SR8 build 2623 (Dionex, Sunnyvale, CA, USA).
The sucrose, fructose, and glucose contents in juice samples
were quoted in millimolar (mM) concentration and the values
back-calculated to represent the amount of sugar in the total
juice extracted from 400 g of shredded cane.

Total Biomass Composition and Data Analysis

All the data obtained from fiber characterization and juice
sugar measurement were combined and used for back-
calculation of the composition of 400-g shredded cane sample
(referred to as total fresh biomass) originally collected (Fig. 1).
The calculation for each sample is explained as follows:

– Moisture in pressed fiber = (pressed fiber fresh
weight − pressed fiber dry weight).

– Cellulose = (predicted % cellulose × pressed fiber dry
mass) = cellulose in 400 g total biomass.

– Hemicellulose = (predicted % hemicellulose × pressed
fiber dry mass) = hemicellulose in 400 g total biomass.

– Lignin = (predicted % lignin × pressed fiber dry
mass) = lignin in 400 g total biomass.

– Total fiber (in 400 g total biomass) = (cellulose + hemi-
cellulose + lignin).

– Juice = (400 g − fresh weight of pressed fiber).
– Water in juice = (total juice − measured sugars − 3 %

juice); *3 % of nonsugar solubles in juice [29].
– Water in 400 g total biomass = (moisture in pressed fiber +

water in juice).
– Unextractable sugar in pressed fiber = moisture in pressed

fiber × (sugar in juice / water in juice).
– Total sugar (in 400 g total biomass) = (sugar in juice +

unextractable sugar in pressed fiber).
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– Total sucrose (in 400 g total biomass) = (sucrose in juice +
unextractable sucrose in pressed fiber).

– Total glucose (in 400 g total biomass) = (glucose in juice +
unextractable glucose in pressed fiber).

– Total fructose (in 400 g total biomass) = (fructose in
juice + unextractable fructose in pressed fiber).

– Ash and insolubles in pressed fiber = (pressed fiber dry
mass − total fiber − extractives).

– Nonsugar solubles in pressed fiber = (extractives in
pressed fiber − unextractable sugar in pressed fiber).

– Total ash and others (in 400 g total biomass) = ash and
insolubles in pressed fiber + nonsugar solubles in pressed
fiber + 3 % juice.

– Total dry biomass = (fiber + total sugar + total ash and
others).

All components were expressed on a percentage of total
fresh biomass basis (calculated for the total 400 g) and a total
dry biomass basis. Mass balance was used to check the accu-
racy of the biomass composition calculation. A Pearson cor-
relation coefficient was computed pairwise for the major bio-
mass components.

Prediction of Theoretical Ethanol Yields

Theoretical ethanol yields were computed separately for
sugars, fiber, and then for both together, on a fresh and dry
biomass basis, based on a stoichiometry calculation of predic-
tionmodel described in [18, 30]. This used a conversion factor
of 0.568 g/g for cellulose, 0.581 g/g for hemicellulose xylan,
0.537 g/g for sucrose, and 0.511 g/g for glucose and fructose.
The equations for calculating theoretical ethanol yields are

listed below (assuming 100 % conversion, and 1.267 mL is
the volume of 1 g ethanol):

- Predicted sugar-based ethanol (L Mg−1) = ((glucose +
fructose) × 0.511) + (sucrose × 0.537)) × 1.267.

- Predicted fiber-based ethanol (L Mg−1) = ((cellulose ×
0.568) + (hemicellulose × 0.581)) × 1.267.

Data Analysis

All data analyses were done using the Data Analysis ToolPak
in Microsoft Excel 2013 and RStudio ver.0.9.8/R ver.3.1.2
[31], including lattice [32], ggplot2 [33], reshape2 [34], and
Hmisc [35] packages. Pairwise comparison panels of main
biomass components were generated by using R built-in func-
tions; code can be accessed here [36].

Results

Chemical Composition Analysis

The results for biomass compositional analysis on 30 selected
pressed fiber samples are presented in Table 1. The results
showed that, on a %DM basis of the pressed fiber, selected
samples had 1–3 % total ash, 15–35 % extractives, 26–41 %
cellulose, 16–26 % hemicellulose, and 12–20 % lignin.
Within the EF fraction, the ranges for cellulose, hemicellulose,
and lignin were 38–46, 23–30, and 18–22 %, respectively.
The combined calibration dataset, derived from whole stalk,
pressed fiber, and mill bagasse, is presented in Table 2. The
amount of extractives in the samples mostly depends on the
type of sample and the sample processing method. It is ex-
pected that there are less extractives in a pressed fiber sample

Fig. 1 The overview analysis
strategies of sugarcane biomass
profiling for samples collected
from millable stalk, including
fiber characterization and juice
sugar assessment
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than in a whole stalk sample and more than in a mill bagasse
sample. Therefore, the calibration set derived from three types
of samples should cover well the range of expected extractives
in pressed fiber samples. We found various studies reported
the composition of sugarcane lignocellulosic biomass with
different extractives contents due to the use of different ex-
traction methods. As a result, we reported data on an EF basis
to allow comparison of our dataset with those reported in the
literature. Our calibration set had 33–48% cellulose, 21–30%
hemicellulose, and 16–23 % lignin. This final set exhibited a
wide range of extractives content (5–68%DM), due to being
derived from whole stalk samples (high extractives), pressed
fiber (medium to high extractives), and bagasse samples (low
extractives). In general, the range in the calibration set aligned
well the values reported for cellulose, hemicellulose, lignin,
and extractives content. This final set of data was suitable for
modeling to predict sample composition in this study.

NIR Spectroscopic Model Development and Prediction

Table 3 summarizes the predictive performance of the calibra-
tion and validation of the developed models. A good correla-
tion between the predicted values and the reference values
from chemical composition analysis was observed in both
calibration and validation (Fig. 2) of the four main predicted
components. The R2 value was greater than 0.9 in all cases.
The RMSEC, RMSEP, number of principal components (fac-
tors), slope and offset values allowed comparison between
calibration and validation in each model. The RMSEC and
RMSEP values of the lignin model were lowest amongst the
four models, while the extractives model had the highest
values. All in all, the performance of calibration and valida-
tion illustrates a good predictive ability of the models suggest-
ing that they can be applied to estimate the biomass fiber
composition in the unknown samples. These models were
used to predict the biomass composition of each sample from
the spectra collected on the XDS NIR instrument.

Figure 3 presents predicted results using the developed
models for the four biomass components. This data represents
the potential sugar sources (mostly from hexose-glucose and
pentose-xylose from cellulose and hemicellulose) in the sam-
ple to be used for biofuel production, as well as the recalcitrant
challenge (from lignin content) of the biomass source [37, 38].
The extractives, on the other hand, indicate the total amount
water- and ethanol-soluble substances in the pressed fiber
samples, including juice sugars not extracted during pressing.
Figure 3a and Table 4 show that within the four predicted
ranges, the extractives has the widest variation compared to
the other three ranges. The cellulose, hemicellulose, lignin,
and extractives predicted in this population were at 27–42 %
(range = 15), 16–25 % (range = 9), 12–20 % (range = 8), and
3–38 % (range = 35), on a %DM basis, respectively. All data
fitted within the ranges of the calibration sample set. AT
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Pearson correlation test (Fig. 3b) indicated that lignin content
was more strongly correlated with hemicellulose content
(R2 = 0.92, p < 0.001) than it was with the cellulose content
(R2 = 0.83, p < 0.001). The coefficient of determination be-
tween cellulose and hemicellulose was 0.7 (p < 0.001).
Extractives content were negatively correlated with the lignin
(R2 = −0.98, p < 0.001), hemicellulose (R2 = −0.94,
p < 0.001), and cellulose (R2 = −0.83, p < 0.001) contents.
All frequency histograms in the Fig. 3c–f show that the distri-
butions of the four lignocellulosic traits resemble a normal
distribution.

Sugar Profiling in Juice Samples

Sugars in the juice samples were profiled by HPLC using a set
of equivalent sugar standards. Compared to fiber characteri-
zation, this procedure was straightforward. Sucrose, fructose,
and glucose concentrations within each sample were deter-
mined against a set of equivalent sugar standards. Table 5
summarizes the statistics of sugar analysis across the juice

samples. The total sugar content (sum of sucrose, glucose,
and fructose), ranged from 240 to 844 mM, of which sucrose
was the largest portion (70–99 %). There were wide ranges of
sucrose, glucose, and fructose values across the population,
ranging from 192 to 826, 0–112, and 3–123 mM, respectively.
The ratio of sucrose content to reducing sugars ranged from 2
to 71. The primary correlation analysis of these sugars (on
juice weight basis) follows the same pattern as in the analysis
of combined data on the total biomass, and this is discussed in
the Discussion section.

Analysis of Sugarcane Total Biomass, the Relationship
Between Fiber and Sugar Content

When all data obtained from fiber characterization and sugar
analysis was assembled, we were able to back-calculate the
composition of the biomass collected from the millable sug-
arcane stalk, on both a fresh biomass basis and dry mass basis.
Table 6 shows a summary of statistics of sugarcane biomass
from 186 genotypes after averaging of replicate samples

Table 2 Composition summary
statistics for total ∼300 calibration
samples (whole stalk, pressed
fiber, and bagasse), all values
reported on an extractives-free
basis, except the extractives
expressed on %DM

Cellulose (%) Hemicellulose (%) Lignin (%) Extractives (%)

Max 48.3 29.7 23.0 68.2

Min 33.4 20.6 15.9 4.6

Range 14.9 9.1 7.1 63.6

Mean 39.8 25.0 20.0 30.9

Literature rangea 38–46 22–27 19–31 –

a Data adapted from [28, 29]

Table 3 Descriptive statistics for performance of calibration and cross-validation of models developed for pressed fiber major composition

Constituent Calibration performance

Pretreatment Sample type Na Factors RMSEC R2 Slope Offset

Cellulose 1SNV B + PC + WS 445 4 2.09 0.93 0.93 1.86

Hemicellulose 2SNV B + PC + WS 444 5 1.28 0.93 0.93 1.25

Lignin 2SNV B + PC + WS 444 5 0.98 0.94 0.94 0.83

Extractives 2SNV B + PC + WS 446 5 3.12 0.98 0.98 0.76

Constituent Validation performance

Pretreatment Sample type Nb Factors RMSEP R2 Slope Offset

Cellulose 1SNV B + PC + WS 597 4 1.62 0.98 0.95 1.44

Hemicellulose 2SNV B + PC + WS 596 5 0.97 0.98 0.97 0.47

Lignin 2SNV B + PC + WS 596 8 0.66 0.99 1.00 −0.02
Extractives 2SNV B + PC + WS 598 5 2.71 0.99 0.99 0.18

1SNV first derivative, standard normal variate, 2SNV second derivative, standard normal variate, B bagasse, PC pressed cane, WS whole stalk
a A few outliers were removed from the total 452 samples
b A few outliers were removed from the total 600 samples in each model
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obtained from for each genotype. Overall, the total solids (fi-
ber, sugars, ash, and other compounds), fiber content, and total
sugar content were normally distributed (Fig. 4a, b). A general
scheme of sugarcane biomass composition derived from the
mature millable stalk is presented in Fig. 4c. On a total fresh
biomass basis, the juice content accounted for 78–91 % of
total biomass. The proportion of water and total solids was
61–78 and 22–39%, respectively. The fiber fraction was com-
posed of 4–9 % cellulose, 3–5 % hemicellulose, and 2–4 %
lignin, and all made up 9–19 % of the total fresh biomass.
Sugars were present at 6–23 %. Sucrose, being the primary
sugar, was present between 6 and 22 %, whereas glucose and
fructose were present at 0–1 %, each. Ash (inorganics), insol-
ubles, and other nonsugar soluble compounds (i.e., wax,
starch, phenolic compounds, protein, organic acids, etc.), from
both pressed fiber and juice fractions, were estimated at 1–

5 %. Figure 4d presents the biomass composition on a total
dry biomass basis (total solid fraction) of the millable sugar-
cane stalk. The total fiber and total sugar accounted for 29–61
and 29–64 %, respectively, while an estimated fraction of ash
and other compounds was 3–18 %.

A correlation analysis of the major components of total
sugarcane dry biomass is presented in Fig. 5a. Sugar content
showed a strong negative correlation with fiber and cellulose
content (R2 = −0.92, p < 0.001, for both), hemicellulose
(R2 = −0.89, p < 0.001), and lignin (R2 = −0.89, p < 0.001).
A tight correlation between total fiber and its three constitu-
ents (cellulose, hemicellulose, and lignin) (R2 = 0.94–0.99,
p < 0.001), and between glucose and fructose (R2 = 0.96,
p < 0.001), as observed previously in fiber characterization,
in which predicted data were presented on a pressed fiber
%DM basis, and in juice sugar analysis, respectively. There

Fig. 2 Correlation of chemical composition analysis values versus
predicted values of cellulose (a), hemicellulose (b), lignin (c), and
extractives (d) in the cross-validation of the predictive models. The x-axis
represents the values obtained from the chemical composition analysis

while the y-axis represents the predicted values. The red color indicates
calibration data points, whereas the blue color indicates validation data
points. All values quoted on a %DM basis of pressed fiber samples (color
figure online)
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was no significant correlation between sucrose and either re-
ducing sugar (glucose or fructose), or between any of these
reducing sugars and total fiber or any fiber components
(R2 < 0.3). The graph in Fig. 5b shows an increase in the total
fiber/total sugar ratio (hereafter, referred to as fiber/sugar ra-
tio), ranging from 0.4 to 2.2, when the fiber content increased.
Based on the information obtained from this population, we
identified two contrasting groups of genotypes based on fiber
content and fiber/sugar ratio (highlighted in the graph). This
will be important attribute and should be considered for
further analysis to investigate the difference between
these two groups, in terms of lignin and hemicellulose
composition, and also to identify the genes associated
with these differences. Figure 5c and Table 7 show a
comparison between genotypes of low and high fiber
content, quoted as a percentage on a total dry biomass

basis. Even though there was an increase in the fiber
fraction in the high fiber genotypes (mean = 55 %)
compared to the low fiber genotypes (mean = 32 %),
the proportion of cellulose, hemicellulose, and lignin
within the fiber fraction remained the same.

Prediction of Theoretical Ethanol Yields

Calculations for 186 genotypes (presented in Table 8) showed
that, for each ton (Mg) of total fresh biomass derived from
millable sugarcane stalks, the theoretical fiber-based ethanol
yield ranged from 51 to 107 LMg−1, while that of sugar-based
ethanol was from 42 to 154 L Mg−1. These added up to a
combined ethanol yield from both fiber and sugars, ranging
from 117 to 236 L Mg−1. On a total dry biomass basis,
163–343 L of fiber-based ethanol and 193–438 L of

Fig. 3 Fiber characterization results of all samples from sugarcane
population used in this study, predicted on the NIR spectral data of
pressed fiber samples (N = 331). a Boxplot of cellulose, hemicellulose,
lignin, and extractives predicted. b Pearson correlation analysis between
predicted compositions, cellulose, hemicellulose, lignin, and extractives.

The darker color is, the stronger the correlation (closer to either −1 or +1).
The red color represents for a positive correlation while the blue color
represents a negative correlation. c–f Frequency histograms for sugarcane
lignocellulosic biomass composition on %DM basis of pressed fiber

Table 4 Summary statistics of
predicted values for cellulose,
hemicellulose, lignin, and
extractives, quoted on the %DM
basis of pressed fiber sample

Cellulose (%DM)
Hemicellulose (%DM) Total lignin (%DM) Extractives (%DM)

Max 41.7 25.2 20.2 37.9

Min 26.7 16.4 12.2 2.7

Range 15.1 8.9 8.0 35.2

Mean 33.4 20.4 15.9 21.9

SD 2.4 1.4 1.2 5.4

N 331 331 331 331
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sugar-based ethanol could be produced from each ton of
biomass. The combined ethanol yield from dry biomass
was from 506 to 617 L Mg−1.

Discussion

Sugarcane is considered an efficient biomass accumulator for
sugar and biofuel production. Its sugar has been used for first-

generation biofuels in the last 10 to 20 years, while its ligno-
cellulosic biomass has only recently been exploited for
second-generation biofuels. Sugarcane lignocellulosic bio-
mass is derived mostly from its millable stalk and partially
from leaves and green tops, estimated to be two thirds of the
total sugarcane biomass produced [39–41]. Hence, develop-
ing sugarcane varieties with a desirable fiber/sugar ratio with-
in this biomass fraction, from the current diverse germplasm
collections, is essential and should be advanced in parallel

a b

c d

Ash and others
1-5%

Water
61-78%

Cellulose
4-9%

Hemicellulose
3-5%

Sucrose
6-22%

Glucose
0-1%

Fructose
0-1%

Total solids
22-39%

Sugarcane stalk

Sugars
6-23%

Fiber
9-19%

Ash and others
3-18%

Cellulose
14-29%

Hemicellulose
9-18%

Sucrose
26-64%
Glucose

0-5%
Fructose

0-2%

Total solids

Sugars
29-64%

Organics
Wax, proteins, phenolics, etc.

Inorganics
Salts, etc.

Fiber
29-61%

De
ns

ity

De
ns

ity

Total fiber (%) Total sugar (%)

Fig. 4 Summary statistics of general composition of sugarcane total
biomass from millable stalk. a, b Distribution of total fiber and total
sugar, quoted on percentage of total fresh biomass. c General

composition of sugarcane biomass, quoted on the total fresh biomass
basis. d General composition of sugarcane biomass quoted on total dry
biomass (solid fraction)

Table 5 Summary statistics for
sugar analysis in juice samples Sucrose

(mM)
Glucose
(mM)

Fructose
(mM)

Ratio of
sucrose/
reducing
sugars

Total
sugar
(mM)

Max 826.1 111.7 123.5 70.5 844.4

Min 192.2 0.4 2.5 2.4 239.7

Mean 548.9 19.0 18.4 21.9 586.3

SD 139.0 14.0 13.5 14.8 137.8

N 331 331 331 331 331
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with biomass pretreatment and conversion technologies. We
investigated a total of 331 sugarcane samples, from a popula-
tion of 186 commercial hybrid and introgressed genotypes,
deriving from parents of different genetic backgrounds, in-
cluding Saccharum officinarum, Saccharum spontaneum,

Erianthus arundinaceus, and Erianthus procerus. This study
set out to analyze the sugarcane total biomass in a systematic
way, in order to identify suitable germplasm to be included in
genotyping, association studies, and breeding programs. The
NIR- and HPLC-based methods in this study provided a

a

b c

0

5

10

15

20

25

30

Low fiber genotypes High fiber genotypes

%
 T

ot
al

 d
ry

 b
io

m
as

s

Fiber composi�on on the dry mass basis

% Cellulose % Hemicellulose % Lignin

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

FI
be

r/
su

ga
r r

a�
o

%
 F

ib
er

 in
 th

e 
to

ta
l d

ry
 b

io
m

as
s

Genotype

Fiber/sugar ra�o

% Fiber in total dry mass Fiber/Sugar

Fig. 5 Relationship between major compositions in sugarcane total dry
biomass from millable stalk. a Correlation analyses of fiber and sugar
composition. Correlation coefficient text size is scaled based on its values.
*p < 0.05; **p < 0.01; ***p < 0.001; †p < 0.1. All the values on the axis
are expressed on percentage of total dry biomass. b Fiber/sugar ratio

across the population, sorted as fiber content from low to high. Two
groups of low fiber and high fiber genotypes are highlighted in the plot.
c Comparison of fiber composition between contrasting genotypes, low
and high fiber. Data of each group was averaged of ten highest and ten
lowest genotypes

410 Bioenerg. Res. (2017) 10:400–416



semidestructive, fast, and high-throughput way to collect and
process the biomass data and screen large populations.

Near-infrared spectral data (400–2500 nm) was acquired
for all biomass samples using the Foss XDS instrument. The
peaks in the NIR spectrum provides information about all
organic substances, and those associated with them, present
within the biomass, which allows the quantitative assessment
of biomass components of interest [42]. However, it has been
suggested that the spectral regions between 400–1100 nm and
2300–2500 nm are not suited to reflectance measurement and
contain high levels of noise that could interfere with the anal-
ysis of biomass compositions [16, 43]. These were removed
prior to the pretreatment, and only the range of 1100–2300 nm
was used for further analysis. NIR spectral data requires dif-
ferent pretreatment in comparison with data obtained from
other platforms such as Raman or NMR [44], to remove

scatter effects while maintaining a correlation between the
signal and analyte concentration. The pretreatment can be first
derivative, second derivative, multiplicative scatter correction
(MSC), or SNV transforms [16, 45]. In this study, we focused
on predicting the major composition, including cellulose,
hemicellulose, lignin, and extractives, in the sugarcane bio-
mass. Ash and other minor organic contents (accounted for
1–3 % total biomass [29]) were not predicted nor measured,
with the assumption that they present at relatively constant,
low levels across the samples being analyzed. These fractions
can be confirmed after the information of other major constit-
uents such as water, total dry biomass, fiber, and sugars is
obtained.

In NIR spectroscopic model development, the number of
samples in the calibration set is an important factor in deter-
mining the success of the prediction, and is normally

Table 6 Summary statistics of total fresh biomass composition, including juice, total solids, fiber and sugar, ash and other compounds

%
Juice

% Total
solids

%
Fiber

%
Cellulose

%
Hemicellulose

%
Lignin

%
Sugars

%
Sucrose

%
Glucose

%
Fructose

% Ash and
others

Max 90.9 39.0 19.0 9.4 5.4 4.3 22.7 22.5 1.2 0.6 5.28

Min 78.0 21.8 9.2 4.1 2.7 2.1 6.2 5.6 0.1 0.0 1.03

Range 12.8 17.2 9.8 5.3 2.7 2.2 16.4 16.9 1.2 0.6 4.25

Mean 85.8 31.6 12.9 6.2 3.8 2.9 15.7 15.2 0.3 0.2 2.99

SD 2.2 2.9 1.9 0.9 0.5 0.4 3.3 3.4 0.2 0.1 0.89

N 186 186 186 186 186 186 186 186 186 186 186

Table 7 Data of two contrasting groups of ten low and ten high fiber genotypes, data expressed on percentage of total dry biomass basis

Genotype % Fiber % Cellulose % Hemicellulose % Lignin % Sugar % Sucrose % Glucose % Fructose % Ash and
others

Fiber/sugar

Low fiber genotypes
QN05-237 28.9 13.9 8.6 6.5 64.4 64.0 0.3 0.2 6.6 0.4
KQ08-2926 30.2 14.7 8.8 6.7 63.8 63.1 0.4 0.3 6.0 0.5
KQ08-2552 30.4 14.3 9.1 7.0 60.6 58.4 1.4 0.8 8.9 0.5
KQ08-2744 31.3 15.0 9.1 7.2 63.3 61.9 0.9 0.5 5.4 0.5
QN05-503 32.3 15.3 9.7 7.4 60.5 59.1 0.9 0.5 7.1 0.5
QC02-402 32.4 15.4 9.4 7.6 53.1 50.1 1.9 1.1 14.5 0.6
QN05-307 32.6 15.7 9.5 7.5 61.3 60.8 0.3 0.2 6.1 0.5
KQB07-24815 32.7 15.6 9.5 7.6 61.2 59.2 1.3 0.7 6.1 0.5
-2859 32.8 16.3 9.2 7.3 62.6 61.3 0.7 0.5 4.6 0.5
QS99-2014 32.9 15.7 9.6 7.6 57.7 56.7 0.6 0.4 9.4 0.6
Mean 31.7 15.2 9.2 7.2 60.9 59.5 0.9 0.5 7.5 0.5

High fiber genotypes
KQB09-20432 51.5 25.4 14.5 11.7 32.8 30.6 1.4 0.8 15.7 1.6
QBYC05-20706 52.7 25.7 15.2 11.8 38.3 37.4 0.5 0.4 9.0 1.4
KQB07-24423 52.9 25.5 15.1 12.2 34.7 33.7 0.7 0.3 12.4 1.5
QBYN04-26171 53.3 25.8 15.2 12.3 32.0 29.3 1.8 0.9 14.7 1.7
KQB07-23162 53.8 25.9 15.7 12.1 32.5 31.7 0.5 0.3 13.7 1.7
QBYN04-26050 55.4 27.4 15.5 12.5 29.6 27.8 1.1 0.7 15.1 1.9
KQB08-22526 55.4 26.9 15.7 12.8 30.4 29.8 0.4 0.1 14.2 1.8
QB01-10021 56.1 26.5 16.6 13.0 30.4 27.3 1.9 1.1 13.5 1.8
QB01-10003 57.8 28.4 16.4 13.0 28.6 26.0 1.6 1.1 13.6 2.0
KQ08-2628 61.5 29.5 17.8 14.2 28.6 25.6 2.0 0.9 10.0 2.2
Mean 55.0 26.7 15.8 12.6 31.8 29.9 1.2 0.7 13.2 1.8
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influenced by the natural variation of the traits. Hundreds, if
not thousands, of samples are normally expected to be used
for model development of key lignocellulosic components
due to the complex agricultural matrix of the samples. For
instance, in modeling of the cell wall composition, 232 sam-
ples were used in [16], 130 samples in [46], 160–208 samples
in [28], and 228 samples in [11]. In this study, we analyzed a
total collection of ∼300 samples, from three sample types:
whole stalk, pressed fiber, and bagasse. We treated all dupli-
cate analyses as individual samples to maximize the number
of samples, resulting in a final ∼600-sample calibration set.
Our results suggest that this was a reasonable number to de-
velop good prediction models.

In evaluating the predictive performance of models, R2

validation (R2val) and RMSEP are compared. The R2val
value shows how well the predicted values fit with the
reference values derived from chemical composition anal-
ysis, while the RMSEP is an index indicating how well
the prediction model predicts the unknown samples [16,
47]. Normally, a low RMSEP and high R2val values
(close to 1), are desired. The R2val values of the four
models in this study were 0.98–0.99, which is higher than
that in a corn model (0.42–0.85) [48], and a sorghum
model (0.90–0.94) [46]. The RMSEP of the cellulose
model was 1.62 (1.96 for corn, 1.45 for sorghum); the
RMSEP of the hemicellulose model was 0.97 (1.33 for
corn, 0.81 for sorghum), lignin model was 0.66 (1.49 for
corn, 0.82 for sorghum), and extractives model was 2.71
(2.33 for corn model, 2.33 for sorghum model). In the
two earlier studies of sugarcane stalk derived biomass,
the R2val was 0.45–0.77 and RMSEP values were 2.57,
1.99, and 1.88 (for cellulose, hemicellulose, and lignin,
respectively) [11], while R2val was 0.86–0.96, but
RMSEP were not provided [28]. A higher R2val value in
this study indicates that the predicted values were well
correlated with the chemical composition analysis; a good
predictive performance is expected. While the cellulose
and hemicellulose models had an RMSEP in a reasonable
range, the lignin model had the lowest RMSEP of all
models being compared, which could indicate the best
predictive performance expected from it. The high
RMSEP for the extractives model is likely due to the
mixture of materials (bagasse, pressed fiber, and whole
stalk) being used to develop the calibration models. It
could also be due to the calibration set containing a large
number of bagasse samples, which could weigh the
models slightly. Improvements could be made by increas-
ing the proportion of pressed fiber and whole stalk in the
calibration models. The uncertainty associated with the
prediction has been discussed in [46, 47, 49] which could
prevent the nonsensical prediction from being reported
correctly. The average deviation for our cellulose, hemicel-
lulose, lignin, and extractives models were 1.87%DM,T
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1.31%DM, 1.13%DM, and 3.60%DM, respectively. As
expected, the extractives model had the highest deviation,
and overall, the obtained values were consistent with re-
sults reported earlier in [46, 47].

The models in this study were based on NIR spectral and
chemical composition analysis data collected from different
products derived from sugarcane stalk, corresponding to
3 years of sampling. This allows the models to be used in
biomass composition prediction for samples with different
extractives presentation, ranging fromwhole stalk and pressed
fiber to bagasse. The population studied included wide varia-
tion ranges in cellulose, hemicellulose, and lignin content on a
%DM basis of the pressed fiber. The highest cellulose, hemi-
cellulose, and lignin contents reported in this population were
42, 25, and 20% of the pressed fiber dry mass, which are close
to the data reported in [50, 51] for energy cane (type I) which
has 43 % cellulose, 24 % hemicellulose, and 22 % lignin. On
the other hand, the lowest figures were 27, 16, and 12 %,
respectively, which are lower than the typical composition in
a commercial variety [29]. It is important to keep in mind that,
in this comparison, the values on pressed fiber samples were
used to compare with those in literature, since most studies
reported for either pressed fiber, bagasse, or extractives-free
fiber samples. For the values on a total dry biomass basis, see
Fig. 4d. It is also important to clarify here that the predicted
cellulose content was based on the total glucose released in the
acid hydrolysis, and it was reported that the glucose (in
xyloglucan) makes up about 15 % of the hemicellulose frac-
tion in sugarcane bagasse [52] (this could be ∼3 % of the total
fiber). Since cellulose and hemicellulose were determined
from the same hydrolysis, this result likely overestimated the
cellulose content in the fiber by including the amount of hemi-
cellulose glucose. On a total fresh biomass basis, normal dis-
tributions of major biomass components in Fig. 4a, b indicate
that the calibration models and sugar assessment performed
well on this sample collection. The data summarized in Fig. 4c
was in agreement with the previous observations reported in
literature for sugarcane total fresh biomass. The total solids,
fiber, and sugars were 22–39, 9–19, and 6–23 % of total fresh
biomass, respectively, while they were 18–25, 10–16, and 15–
24 % in Mutton (2008) cited in [29], and 24–27, 11–16, and
10–16% in Irvine (1977) cited in [53]. The ratio of fiber/sugar
ranged from lower than that of a typical commercial variety
(around 1) [51, 54] to value reported for high fiber energy cane
varieties (around 2) [50]. The wide ranges of solid content and
fiber/sugar ratio may be a result of the population, which was
generated from diverse genetic backgrounds, including differ-
ent accessions of sugarcane parental species and two
Erianthus species.

While fermentable sugars indicate the potentials of the bio-
mass sources for biofuels, the lignin content is considered the
center of lignocellulosic biomass recalcitrance [55–57].
Lignin inhibits the acid pretreatment and enzymatic

fermentation of biomass [58]. The use of low-lignin, high-
fiber biomass sources are preferred in biofuel production,
not only to reduce the cost of pretreatment but also to gain
higher sugar yield [59]. Typical lignin content reported for
some lignocellulosic biomass sources are as follows: euca-
lypts (27.5–32.7 %) [60], poplar (21–29 %) reviewed in
[61], and sugarcane (19.1–31.4 % for extractives-free bagasse
reviewed in [28], 13.2 % dry biomass basis in [62]). Our data
reported lignin content ranging 12–20% on a pressed fiber dry
mass basis, 2–4 % of total fresh biomass, and 6–14 % of total
dry biomass. The wide range of lignin content in this popula-
tion would make a valuable source for breeding programs,
since lignin content would be one of the most important se-
lection criteria when screening germplasm to include in breed-
ing programs for biofuels.

Understanding the relationships between components in
the biomass, especially between the total solids-fiber-sugars,
would potentially help to improve the sugarcane system for
fiber and/or sugar production. The negative correlation be-
tween fiber and sugar, positive correlation among the fiber
components, as well as the proportion of fiber components
between the low and high fiber samples, are in agreement with
the current knowledge about the highly regulated process of
carbon partition in the sugarcane plant [63–69]. The extrac-
tives obtained in this study represented for the ethanol- and
water-soluble compounds, including sugars from the
unextracted juice in the pressed fiber. The negative correlation
between extractives and fiber content could likely be due to
the different ability to retain juice of the low and the high fiber
samples. For the accuracy of fiber characterization, the extrac-
tives need to be removed prior to composition analysis [38].
The extractive content cannot be used as a trait for assessing
biomass for genetic studies, since it depends on the juice ex-
traction method used to generate pressed fiber samples.

In terms of potentials for biofuels, our calculation showed
that 117–236 and 506–617 L ethanol could be produced from
each fresh and dry ton of sugarcane total biomass, respective-
ly. This result is consistent with the realistic yield from sugar-
cane fresh biomass (∼120 L Mg−1) in [70] and predicted yield
for sweet sorghum fresh biomass (81–138 L Mg−1) [25]. It
was higher than the estimated figures reported for sugarcane
dry bagasse (422 L Mg−1) (http://www.afdc.energy.
gov/fuels/ethanol_feedstocks.html), and switchgrass dry
biomass (406.3–427.8 L Mg−1) [18], both based on the US
Department of Energy prediction model, which assumed that
1.7 kg hexose-equivalent sugars and 2.65 kg fiber were re-
quired to produced 1 L of sugar-based and fiber-based etha-
nol, respectively. The prediction model used in this study as-
sumed that an efficient pentose-fermenting organism avail-
able, and ethanol yield was calculated separately for glucan,
xylan, sucrose, glucose, and fructose in the biomass, with
different conversion factors accordingly (see Materials and
Methods). It is noteworthy that the fiber-based and sugar-
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based predicted ethanol in this study were computed from the
corrected fiber and sugar fractions, in which the juice sugars
remained in the pressed fiber were deducted and added back to
the total sugar. Sugar-based ethanol yield represents the po-
tential for first-generation biofuel production, while fiber-
based ethanol yield represents potential second-generation
biofuel production, from sugarcane system. The combined
ethanol yield indicates the potential to integrate first-
generation production into second-generation biofuel produc-
tion, to make biofuel production more feasible on a large scale
and would allow full use of the infrastructure already well-
established in sugarcane production for biofuels [70]. The data
provides another indicator of the value of screening and
selecting sugarcane genotypes from a large collection for use
in biofuel production.

Conclusions

In order to develop a suitable collection of sugarcane varieties
for biofuel production, it is imperative that the key biomass
traits be evaluated. The results for the analysis of 331 samples
from a sugarcane population demonstrate that it is possible to
use the NIR spectroscopic methods to predict sugarcane bio-
mass composition, allowing high-throughput assessment of
sugarcane germplasm, with acceptable accuracy compared to
conventional wet chemistry. The employment of an NIR spec-
troscopic method in combination with HPLC can enable the
semidestructive, rapid profiling of sugarcane biomass sam-
ples. This method is suitable for screening large populations
for biomass key traits, to be included in breeding programs,
generating more efficient sugarcane varieties for biofuel
production.

Overall, based on the biomass compositional analyses of
186 genotypes, it is concluded that this population possesses a
wide variation in total solids, fiber, and sugar content. This is a
valuable resource for research on sugarcane biomass for
biofuels. The identification of the contrasting genotypes, such
as lowest and highest in the total sugar, total fiber, cellulose
content, hemicellulose individual components, lignin S/G ra-
tio, and saccharification yield, would allow further investiga-
tion into this type of germplasm, for example, for association
studies, to discover the candidate genes that control the traits
of interest. The genetic information obtained would facilitate
the selection of the sugarcane varieties and modification of
sugarcane biomass for biofuel production [71]. Having sugar-
cane biomass with less recalcitrant components would reduce
the cost of pre-treatment and enzymes; and make producing
biofuels from biomass more feasible on a large scale.

ASL, Acid soluble lignin; AIL, Acid-insoluble lignin; CV,
Cross-validation; DM, Dry mass; EF, Extractives free; HPLC,
High-performance liquid chromatography; NIR, Near-
infrared spectroscopy; PLS, Partial least squares regression;

psi, Pounds per square inch; R2, Coefficient of correlation;
R2val, R2 validation; RMSEC, Root mean standard error of
calibration; RMSECV, Root mean standard error of cross-
validation; RMSEP, Root mean standard error of prediction;
SNV, Standard normal variate
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