Skip to main content
Log in

Commercially Grown Short Rotation Coppice Willow in Denmark: Biomass Production and Factors Affecting Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The objectives of this study were to estimate biomass production in commercially grown short rotation coppice willow in Denmark and to investigate effects of site and management factors on willow yield. Biomass production assessed by non-destructive sampling on 296 plots from 25 plantations was analyzed using a mixed model approach. Average production in the stands varied between 2.4 and 15.1 odt ha−1 year−1, and average second rotation growth (8.2 odt ha−1 year−1) was significantly higher than first rotation growth (6.5 odt ha−1 year−1). Annual production was significantly correlated with clone, soil texture, soil drainage, fertilization, weeds, rotation number, and shoot age. Further, interactions between clone and soil drainage as well as between clone and soil texture were significant, indicating the importance of a site-specific choice of clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. European Commission. Directive (2009) 2009/28/EC of the European parliament and of the Council of the 23 April 2009 on the promotion of the use of energy from renewable sources. European Commission, Brussels

    Google Scholar 

  2. Ericsson K, Nilsson LJ (2006) Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 30(1):1–15

    Article  Google Scholar 

  3. Slade R, Saunders R, Gross R, Bauen A (2011) Energy from biomass: the size of the global resource. Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London

    Google Scholar 

  4. European Environment Agency (2006) How much bioenergy can Europe produce without harming the environment? EEA Report No 7/2006, Copenhagen

  5. Mola-Yudego B (2011) Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass Bioenergy 35(1):446–453

    Article  Google Scholar 

  6. Venendaal R, Jorgensen U, Foster CA (1997) European energy crops: a synthesis. Biomass Bioenergy 13(3):147–185

    Article  Google Scholar 

  7. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165

    Article  PubMed  Google Scholar 

  8. Larsson S (2001) Commercial varieties from the Swedish willow breeding programme. Aspe Appl Biol 65 (Biomass and Energy Crops II) 193

  9. Larsson S (1998) Genetic improvement of willow for short-rotation coppice. Biomass Bioenergy 15(1):23–26

    Article  Google Scholar 

  10. Lindegaard K, Parfitt RI, Donaldson G, Hunter T, Dawson WM, Forbes EGA, et al. (2001) Comparative trials of elite Swedish and UK biomass willow varieties. Aspe Appl Biol 65 (Biomass and Energy Crops II)

  11. Bullard MJ, Mustill SJ, McMillan SD, Nixon PMI, Carver P, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp.—1. Yield response in two morphologically diverse varieties. Biomass Bioenergy 22(1):15–25

    Article  Google Scholar 

  12. Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32(12):1227–1234

    Article  Google Scholar 

  13. Willebrand E, Ledin S, Verwijst T (1993) Willow coppice systems in short-rotation forestry—effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4(5):323–331

    Article  Google Scholar 

  14. Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156

    Article  CAS  Google Scholar 

  15. Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ (2007) Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy 31(7):469–474

    Article  Google Scholar 

  16. Sage RB (1999) Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Res 39(5):399–411

    Article  Google Scholar 

  17. Tahvanainen L, Rytkönen VM (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16(2):103–117

    Article  Google Scholar 

  18. Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25(4):389–398

    Article  Google Scholar 

  19. Bonosi L, Ghelardini L, Weih M (2010) Growth responses of 15 Salix genotypes to temporary water stress are different from the responses to permanent water shortage. Trees-Struct Funct 24(5):843–854

    Article  Google Scholar 

  20. Alriksson B (1997) Influence of site factors on Salix growth with emphasis on nitrogen response under different soil conditions. Acta universitatis agriculturae Sueciae, Silvestria, 46

    Google Scholar 

  21. Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships. For Ecol Manag 121(1–2):41–55

    Article  Google Scholar 

  22. Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146

    Article  Google Scholar 

  23. Lindroth A, Bath A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manag 121(1–2):57–65

    Article  Google Scholar 

  24. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  25. Alriksson B, Ledin S, Seeger P (1997) Effect of nitrogen fertilization on growth in a Salix viminalis stand using a response surface experimental design. Scand J For Res 12(4):321–327

    Article  Google Scholar 

  26. Aronsson P, Rosenqvist H (2011) Gödslingsrekommendationer för Salix 2011 (In Swedish). SLU, Institut för Växtproduktionsekologi, Rapport 23 marts 2011

  27. Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173

    Article  CAS  Google Scholar 

  28. Quaye AK, Volk TA, Hafner S, Leopold DJ, Schirmer C (2011) Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenergy 35(7):2796–2806

    Article  Google Scholar 

  29. Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370

    Article  PubMed  Google Scholar 

  30. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179(1):15–32

    Article  PubMed  Google Scholar 

  31. Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837

    Article  Google Scholar 

  32. Morsing M, Nielsen KH (1995) Tørstofproduktion i danske pilekulturer 1989-(In Danish). Forskningscentret for Skov & Landskab, Skovbrugsserien 1995;13

  33. Sundberg PS, Callesen I, Greve MH, Raulund-Rasmussen K (1999) Danske jordbundsprofiler (In Danish). Danmarks Jordbrugs Forskning, Foulum

    Google Scholar 

  34. Danish Meteorological Institute (2011) Klimanormaler for Danmark (In Danish). http://www.dmi.dk/dmi/index/danmark/klimanormaler.htm. Accessed 7 July 2011

  35. Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice—a comparison between destructive and non-destructive methods. Biomass Bioenergy 27(1):1–8

    Article  Google Scholar 

  36. Sevel L, Nord-Larsen T, Raulund-Rasmussen K (2012) Biomass production of four willow clones grown as short rotation coppice on two soils in Denmark. Biomass Bioenergy 46:664–672

    Article  Google Scholar 

  37. Telenius BF (1997) Implications of vertical distribution and within-stand variation in moisture content for biomass estimation of some willow and hybrid poplar clones. Scand J For Res 12(4):336–339

    Article  Google Scholar 

  38. Sevel L, Nord-Larsen T, Ingerslev M, Jørgensen U, Raulund-Rasmussen K (2014) Fertilization of SRC willow, I: biomass production response. Bioenergy Res 7(1):319–328

    Article  CAS  Google Scholar 

  39. Lantmännen Agroenergi (2011) Willow varieties 2010. Lantmännen Agroenergi, Huskvarna

    Google Scholar 

  40. Weih M, Nordh NE (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413

    Article  Google Scholar 

  41. Lantmännen SW seed AB (2011) Willow varieties 2011. Lantmännen SW seed AB Onsjövägen 13, Svalöv

    Google Scholar 

  42. Macalpine WJ, Shield I, Karp A (2010) Seed to near market variety; the BEGIN willow breeding pipeline 2003–2010 and beyond. Bioten Conf Proceedings, Birmingham 21–23 September 2010

  43. Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For Ecol Manag 150(3):223–239

    Article  Google Scholar 

  44. Jackson MB, Attwood PA (1996) Roots ow willow (Salix viminalis L.) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 187(1):37–45

    Article  CAS  Google Scholar 

  45. Li S, Pezeshki SR, Shields FDS Jr (2006) Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J Plant Physiol 163(6):619–628

    Article  CAS  PubMed  Google Scholar 

  46. Danfors B, Ledin S, Rosenqvist H (1997) Energiskogsodling: Handledning för odlare (In Swedish). Jordbrukstekniska Institutet

  47. Clay DV, Dixon FL (1997) Effect of ground-cover vegetation on the growth of poplar and willow short-rotation coppice. Asp Appl Biol Biomass Energ Crops 49:53–60

    Google Scholar 

  48. Labrecque M, Teodorescu TI, Babeux P, Cogliastro A, Daigle S (1994) Impact of herbaceous competition and drainage conditions on the early productivity of willows under short-rotation intensive culture. Can J For Res 24(3):493–501

    Article  Google Scholar 

  49. Volk TA, Abrahamson LP, White EH, Robison DJ (2002) Alternative methods of site preparation for short-rotation willow and poplar biomass crops. Biomass power for rural development Final report prepared for the United States Department of Energy under cooperative agreement No DE-FC36-96GO10132

  50. Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142(1):160–169

    Article  CAS  PubMed  Google Scholar 

  51. Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II. Nutritional status and bioelement export by harvested shoot axes. For Ecol Manag 121(1–2):67–83

    Article  Google Scholar 

  52. Nordh NE (2005) Long term changes in stand structure and biomass production in short rotation willow coppice. Doctoral Thesis No 2005:120 Acta Univer Agri Sueciae Dep of Crop Prod Ecol, Uppsala

  53. Volk TA, Abrahamson LP, Cameron KD, Castellano PJ, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen Y, Labrecque M, Miller R, Sidders D, Smart LB, Staver K, Stanosz GR, Rees K van (2011) Yields of willow biomass crops across a range of sites in North America. Asp Appl Biol (112):67–74

  54. Kopp RF, Abrahamson LP, White EH, Burns KF, Nowak CA (1997) Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass Bioenergy 12(5):313–319

    Article  Google Scholar 

  55. Kopp RF, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenergy 20(1):1–7

    Article  CAS  Google Scholar 

  56. Stolarski MJ, Szczukowski S, Tworkowski J, Wroblewska H, Krzyzaniak M (2011) Short rotation willow coppice biomass as an industrial and energy feedstock. Ind Crop Prod 33(1):217–223

    Article  Google Scholar 

  57. Willebrand E, Verwijst T (1993) Population-dynamics of willow coppice systems and their implications for management of short-rotation forests. For Chron 69(6):699–704

    Article  Google Scholar 

  58. Dansk Landbrugsrådgivning (2011) Dyrkningsvejledning, Pil (In Danish). https://www.landbrugsinfo.dk/planteavl/afgroeder/energiafgroeder/pil-energiskov/sider/startside.aspx. Accessed 10 Jan 2011

Download references

Acknowledgments

This study was funded by HedeDanmark A/S, Dalgas Innovation, Department of Geosciences and Natural Resource Management University of Copenhagen, and the Danish Agency for Science Technology and Innovation. We greatly acknowledge the 14 farmers for the use of their SRC willow stands and providing us with the historic information. We thank Lise Bak for weighing shoots and for the determination of moisture content and senior scientists Morten Ingerslev and Uffe Jørgensen for the discussion of the experimental design and evaluation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth Sevel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nord-Larsen, T., Sevel, L. & Raulund-Rasmussen, K. Commercially Grown Short Rotation Coppice Willow in Denmark: Biomass Production and Factors Affecting Production. Bioenerg. Res. 8, 325–339 (2015). https://doi.org/10.1007/s12155-014-9517-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9517-6

Keywords

Navigation