Skip to main content
Log in

Evaluation of Salinity Tolerance and Genetic Diversity of Thirty-Three Switchgrass (Panicum virgatum) Populations

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species. Salt stress is one of the major limiting factors for switchgrass growth in many regions. The objective of this study was to examine relative salt tolerance and genetic diversity among 33 switchgrass populations. Seeds of each population were planted in cone-tainers and grown in a greenhouse. Two months after establishment, the switchgrass were grown in half strength Hoagland’s nutrient solution with either 0 mM NaCl (control) or half strength Hoagland’s nutrient solution with 250 mM NaCl (salt stress treatment) for 24 days. Salt stress tolerance was determined based on a variety of parameters including leaf electrolyte leakage (EL), chlorophyll content (Chl content), leaf photochemical efficiency (F v/F m), photosynthetic rate (P n), stomatal conductance (g s), and transpiration rate (T r). Significant differences in salt stress tolerance were found among the 33 populations. Based on the P n and salt tolerance trait index (STTI), lowland populations AM-314/MS-155, Kanlow, TEM-LoDorm, Alamo, and BN-13645-64, as well as upland populations T-2086, T-2101, BN-11357-63, and BN-12323-69 were classified as salt tolerant. In contrast, upland populations BN-18757-67, 70SG0021, Summer, 70SG0016, T16971, Dacotah, Turkey, 70SG003, and Pathfinder were classified as salt sensitive populations. Sequence-related amplified polymorphism (SRAP) marker analysis was employed to determine the genetic diversity among the 33 switchgrass populations. UPGMA cluster analysis showed that salt tolerant switchgrass populations TEM-LoDorm, Alamo, Kanlow, BN-12323-69, AM-314/MS-155, T2101, BN-11357-63, T-2086, and BN-13645-64 clustered into one group, indicating that these salt tolerant populations may have a similar genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RWC:

Relative water content

EL:

Electrolyte leakage

Chl:

Chlorophyll

F v/F m :

Leaf photochemical efficiency

P n :

Photosynthetic rate

g s :

Stomatal conductance

T r :

Transpiration

STTI:

Salt tolerance trait index

SRAP:

Sequence-related amplified polymorphism

WUE:

Water use efficiency

References

  1. Alexopoulou E, Sharma N, Papatheohari Y, Christou M, Piscioneri I, Panoutsou C, Pignatelli V (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 32:926–933

    Article  Google Scholar 

  2. Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523

    Article  CAS  PubMed  Google Scholar 

  3. Taliaferro CM (2002) Breeding and selection of new switchgrass varieties for increased biomass production. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  4. Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261

    Article  CAS  Google Scholar 

  5. McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  6. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  7. Fan XF, Hou XC, Zuo HT, Wu JY, Duan LS (2010) Effect of marginal land types and transplanting methods on the growth of switchgrass seedlings. Pratacult Sci 27:97–102

    Google Scholar 

  8. Sankar PD, Saleh MAAM, Selvaraj CI (2011) Rice breeding for salt tolerance. Res Biotechnol 2:1–10

    Google Scholar 

  9. Zhang Y, Li H, Yang F, Xie G (2012) Recent advances in salt tolerance of bioenergy grass in China. J China Agric Univ 17:159–164

    Google Scholar 

  10. Munns R (2005) Genes and salt tolerance: bringing them together. New phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad MSA, Ashraf M, Ali Q (2010) Soil salinity as a selection pressure is a key determinant for the evolution of salt tolerance in Blue Panicgrass (Panicum antidotale Retz.). Flora-Morphol, Distr, Funct Ecol Plants 205:37–45. doi:10.1016/j.flora.2008.12.002

    Article  Google Scholar 

  12. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Seliskar DM, Gallagher JL (2005) The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am J Bot 92:852–858

    Article  CAS  PubMed  Google Scholar 

  14. Chen P, Yan K, Shao H, Zhao S (2013) Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ionflux and antioxidant capacity. Plos One 8:e83227

    Article  PubMed Central  PubMed  Google Scholar 

  15. Netondo GW, John Collins O, Beck E (2004) Sorghum and salinity: II. gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  16. Cha-um S, Trakulyingcharoen T, Smitamana P, Kirdmanee C (2009) Salt tolerance in two rice cultivars differing salt tolerant abilities in responses to iso-osmotic stress. Aust J Crop Sci 3:221–230

    CAS  Google Scholar 

  17. Houimli SIM, Denden M, Mouhandes BD (2010) Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsia J BioSci 4:96–104

    Article  Google Scholar 

  18. Cha-um S, Kirdmanee C (2010) Salt tolerance screening in six maize (Zea mays L.) genotypes using multivariate cluster analysis. Philipp Agric Sci 93:156–164

    Google Scholar 

  19. Cha-um S, Ashraf M, Kirdmanee C (2010) Screening upland rice (Oryza sativa L. ssp indica) genotypes for salt-tolerance using multivariate cluster analysis. Afr J Biotechnol 9:4731–4740

    CAS  Google Scholar 

  20. Kanwal H, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 43:2693–2699

    CAS  Google Scholar 

  21. Kong-ngern K, Bunnag S, Theerakulpisut P (2012) Proline, hydrogen peroxide, membrane stability and antioxidant enzyme activity as potential indicators for salt tolerance in rice (Oryza sativa L.). Int J Bot 8:54–65

    Article  Google Scholar 

  22. Wani AS, Ahmad A, Hayat S, Fariduddin Q (2013) Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci 20:183–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C(3) non-halophytes. Plant Physiol 95:628–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Stepien P, Klobus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plantarum 50:610–616

    Article  CAS  Google Scholar 

  25. Stoeva N, Kaymakanova M (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus Vulgaris L.). J Cent Eur Agric 9:385–392

  26. Dkhili M, Anderson B (1990) Salt effects on seedling growth of switchgrass and big bluestem. Proc Proceedings of the twelfth North American prairie conference, Cedar Falls, IA

  27. Kim S, Rayburn AL, Voigt T, Parrish A, Lee DK (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. BioEnergy Res 5:225–235. doi:10.1007/s12155-011-9145-3

    Article  Google Scholar 

  28. Yu X, DU F, Zhang Y (2010) Effects of salt stress on switchgrass seed germination and seedling growth. Acta Agrestia Sin 18:810–815

    Google Scholar 

  29. Du F, Chen X, Yang CH, Zhang YW (2011) Effects of NaCl stress on seed germination and seedling growth of different switchgrass materials. Acta Agrestia Sin 19:1018–1024

    CAS  Google Scholar 

  30. Cortese LM, Honig J, Miller C, Bonos SA (2010) Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenergy Res 3:262–271

    Article  Google Scholar 

  31. Zhang Y, Zalapa J, Jakubowski A, Price D, Acharya A, Wei Y, Brummer EC, Kaeppler S, Casler M (2011) Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139:933–948

    Article  PubMed  Google Scholar 

  32. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215. doi:10.1371/journal.pgen.1003215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Missaoui A, Paterson A, Bouton J (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 53:1291–1302. doi:10.1007/s10722-005-3878-9

    Article  CAS  Google Scholar 

  34. Todd J, Wu YQ, Wang Z, Samuels T (2011) Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms. Gen Mol Res: GMR 10:2976–2986. doi:10.4238/2011.November.29.8

    Article  CAS  Google Scholar 

  35. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. doi:10.1186/1746-4811-9-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  37. Lin ZX, Zhang XL, Nie YC, He DH, Wu MQ (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2063–2067

    Article  CAS  Google Scholar 

  38. Aneja B, Yadav N, Chawla V, Yadav R (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breeding 30:1635–1648. doi:10.1007/s11032-012-9747-2

    Article  CAS  Google Scholar 

  39. Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:1414–1414

    Google Scholar 

  40. Xing W, Wang J, Liu H, Zou D, Zhao H (2013) Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice (Oryza sativa L. japonica) cultivars. Aust J Crop Sci 7:289–292

    Google Scholar 

  41. Ali Z, Salam A, Azhar FM, Khan IA (2007) Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. S Afr J Bot 73:70–75

    Article  CAS  Google Scholar 

  42. Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Gen Mol Res: GMR 11:679–692

    Article  CAS  Google Scholar 

  43. Tavakkoli E, Fatehi F, Rengasamy P, McDonald GK (2012) A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J Exp Botany 63:3853–3867

  44. Zhang X, Wang L, Shou L (2013) Modified CTAB method for extracting genomic DNA from wheat leaf. Agric Sci Technol 14:946–949

    Google Scholar 

  45. Huang LK, Bughrara SS, Zhang XQ, Bales-Arcelo CJ, Bin X (2011) Genetic diversity of switchgrass and its relative species in Panicum genus using molecular markers. Biochem Syst Ecol 39:685–693

    Article  CAS  Google Scholar 

  46. Jensen RJ (1989) Ntsys-Pc-numerical taxonomy and multivariate-analysis system-version 1.40. Q Rev Biol 64:250–252

    Article  Google Scholar 

  47. Perrier X J-CJ (2006) DARwin software. Available: http://darwinciradfr/darwin Accessed 4 Jun 2012

  48. Fan X, Hou X, Zhu Y, Wu J (2012) Impacts of salt stress on the growth and physiological characteristics of Panicum virgatum seedlings. Chin J Appl Ecol 23:1476–1480

  49. Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  CAS  PubMed  Google Scholar 

  50. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci 44:797–805

    Article  CAS  Google Scholar 

  51. Yildirim B, Yasar F, Ozpay T, Turkozu D (2008) Variations in response to salt stress among field pea genotypes (Pisum sativum sp.arvense L.). J Animal Vet Adv: JAVA 7:907–910

    Google Scholar 

  52. Wang Q, Wu C, Xie B, Liu Y, Cui J, Chen G, Zhang Y (2012) Model analysing the antioxidant responses of leaves and roots of switchgrass to NaCl-salinity stress. Plant Physiol Biochem 58:288–296. doi:10.1016/j.plaphy.2012.06.021

  53. Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Luque T, Figueroa ME (2011) Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiol Biochem 49:186–194. doi:10.1016/j.plaphy.2010.11.008

  54. Zegada-Lizarazu W, Wullschleger S, Surendran Nair S, Monti A (2012) Crop physiology. In: Monti A (ed) Switchgrass. Green Energy and Technology. Springer, London, pp 55–86. doi:10.1007/978-1-4471-2903-5_3

    Google Scholar 

  55. Sripathi R, Kakani V, Wu Y (2013) Genotypic variation and trait relationships for morphological and physiological traits among new switchgrass populations. Euphytica 191:437–453. doi:10.1007/s10681-013-0911-5

    Article  Google Scholar 

  56. Munir S, Siddiqi EH, Bhatti KH, Nawaz K, Hussain K, Rashid R, Hussain I (2013) Assessment of inter-cultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. World Appl Sci J 21:384–388

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Seiler and Mr. John Peterson (Virginia Tech) for the equipment support. We also appreciate Dr. Melanie Harrison-Dunn from USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA for providing the switchgrass seeds information. The project was supported by a grant from the US Department of Energy and US Department of Agriculture to XZ and BZ. The activity is also partially supported by the Virginia Agricultural Experiment Station (VA135872) of Virginia Tech to BZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xunzhong Zhang or Bingyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, X., Miao, J. et al. Evaluation of Salinity Tolerance and Genetic Diversity of Thirty-Three Switchgrass (Panicum virgatum) Populations. Bioenerg. Res. 7, 1329–1342 (2014). https://doi.org/10.1007/s12155-014-9466-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9466-0

Keywords

Navigation