Skip to main content
Log in

Long-Term Miscanthus Yields Influenced by Location, Genotype, Row Distance, Fertilization and Harvest Season

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Long-term yield studies in perennial crops like miscanthus are important to determine mean annual energy yield and the farmer’s economy. In two Danish field trials, annual yield of two miscanthus genotypes was followed over a 20-year period. The trials were established in 1993 on loamy sand in Foulum and on coarse sand in Jyndevad. Effects of genotype, row distance and fertilization were investigated. In both trials, yield development over time was characterized by an increase during the first years, optimum yields after 7–8 years and a decrease to a lower level which remained relatively constant from year 11 to 20. Spring harvest reduced the yield by 34–42 % compared to autumn harvest. In Foulum annual fertilization with 75 kg ha−1 N increased the yield of the genotype Goliath (Miscanthus sinensis) by 26 %. Additional N fertilization only increased the yield of Goliath little, and the genotype Giganteus (Miscanthus × giganteus) did not respond to fertilization at all. The highest mean yield in Foulum for the period 1997–2012 was obtained with the shortest row distance (∼18,000 rather than ∼12,000 plants ha−1) and harvested in late autumn, namely 13.1 and 12.0 Mg ha−1 DM annually for Giganteus and Goliath, respectively. In Jyndevad, where only Goliath was studied, the highest yield during 1995–2001 was obtained by short row distance, autumn harvest and annual fertilization with 75 kg ha−1 N, with yield increasing up to 116 % in response to fertilization. A mean yield of 14.4 Mg ha−1 DM was achieved over the period 1995–2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014

    Article  Google Scholar 

  2. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C 4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg 27(1):21–30

    Article  Google Scholar 

  3. Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3(1–2):24–30

    Article  Google Scholar 

  4. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg 19(4):209–227

    Article  CAS  Google Scholar 

  5. Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Chang Biol 13(11):2296–2307

    Article  Google Scholar 

  6. Angelini LG, Ceccarini L, Di Nassa NNO, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenerg 33(4):635–643

    Article  Google Scholar 

  7. Arundale RA, Dohleman FG, Heaton EA, McGrath JM, Voigt TB, Long SP (2013) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy

  8. Gauder M, Graeff-Honninger S, Lewandowski I, Claupein W (2012) Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann Appl Biol 160(2):126–136.

    Article  Google Scholar 

  9. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28(3):320–327

    Article  Google Scholar 

  10. Lesur C, Jeuffroy MH, Makowski D, Riche AB, Shield I, Yates N, Fritz M, Formowitz B, Grunert M, Jørgensen U, Laerke PE, Loyce C (2013) Modeling long-term yield trends of Miscanthus × giganteus using experimental data from across Europe. Field Crop Res 149:252–260

    Article  Google Scholar 

  11. Vyn RJ, Virani T, Deen B (2012) Examining the economic feasability of mischanthus in Ontario: an application to the greenhouse industry. Energy Policy 50:669–676

    Article  Google Scholar 

  12. Jørgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenerg 12(3):155–169

    Article  Google Scholar 

  13. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95(5):1274–1280

    Article  Google Scholar 

  14. Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294

    Article  Google Scholar 

  15. Domon JM, Baldwin L, Acket S, Caudeville E, Arnoult S, Zub H, Gillet F, Lejeune-Henaut I, Brancourt-Hulmel M, Pelloux J, Rayon C (2013) Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry 85:51–61

    Article  PubMed  CAS  Google Scholar 

  16. Atkinson CJ (2009) Establishing perennial grass energy crops in the UK: a review of current propagation options for Miscanthus. Biomass Bioenerg 33(5):752–759

    Article  Google Scholar 

  17. Strullu L, Cadoux S, Preudhomme M, Jeuffroy MH, Beaudoin N (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus × giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121(3):381–391

    Article  Google Scholar 

  18. Davis SC, Parton WJ, Dohleman FG, Gottel NR, Smith CM, Del Grosso SJ, Kent AD, Delucia EH (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 13:144–156

    Article  CAS  Google Scholar 

  19. Cadoux S, Riche AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenerg 38:14–22

    Article  CAS  Google Scholar 

  20. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy 1(4):297–307

    Article  CAS  Google Scholar 

  21. Lewandowski I, Heinz A (2003) Delayed harvest of Miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45–63

    Article  Google Scholar 

  22. Jørgensen U (2005) How to reduce nitrate leaching by production of perennial energy crops. In: Zhu K, Minami K, Xing G. 3rd International Nitrogen Conference, Nanjing, China. pp. 513–518

  23. Jørgensen U, Kjeldsen JB (2000) Production of miscanthus (in Danish with English summary). In: Jørgensen U (ed) Is there a future for energy crops in Denmark? vol 29, DJF Rapport., pp 23–29

  24. Mortensen J, Nielsen KH, Jørgensen U (1998) Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass Bioenerg 15(6):457–466

    Article  CAS  Google Scholar 

  25. SAS Institute (2008) SAS/STAT. Release 9.2. SAS Institute, Cary, NC, USA

  26. Akaike H (1987) Factor-analysis and AIC. Psychometrika 52(3):317–332

    Article  Google Scholar 

  27. Jørgensen U (1996) Miscanthus yields in Denmark. In: Chartier P, Ferrero GL, Henius, UM, Hultberg S, Sachau J, Wiinblad M (eds.). 9th European Bioenergy Conference, Copenhagen, Denmark. June 24–27 1996. Vol. 1, pp. 48–53

  28. Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148(8–9):1280–1292

    Article  Google Scholar 

  29. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4(5):534–544

    Article  CAS  Google Scholar 

  30. Pankhurst CE, Magarey RC, Stirling GR, Blair BL, Bell MJ, Garside AL (2003) Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Tillage Res 72:125–137

    Article  Google Scholar 

  31. Garside AL, Bell MJ (2011) Growth and yield responses to amendments to the sugarcane monoculture: towards identifying the reasons behind the response to breaks. Crop Pasture Sci 62:776–789

    Article  Google Scholar 

  32. Savario CF, Hoy JW (2011) Microbial communities in sugarcane field soils with and without a sugarcane cropping history. Plant Soil 341:63–73

    Article  CAS  Google Scholar 

  33. Hotz A, Kuhn W, Jodl S (1996) Screening of different Miscanthus cultivars in respect of yield production and usability as a raw material for energy and industry. In: Chartier P, Ferrero GL, Henius, UM, Hultberg S, Sachau J, Wiinblad M (eds.). 9th European Bioenergy Conference, Copenhagen, Denmark. June 24–27 1996. Vol 1, pp. 523–527

  34. Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T (2012) Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 4(3):253–265

    Article  Google Scholar 

  35. Hastings A, Clifton-Brown J, Wattenbach M, Stampfl P, Mitchell CP, Smith P (2008) Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agron Sustain Dev 28(4):465–472

    Article  Google Scholar 

  36. Jørgensen U, Mortensen J, Kjeldsen JB, Schwarz KU (2003) Establishment, development and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agric Scand Sect B-Soil Plant Sci 53(4):190–199

    Google Scholar 

  37. Amougou N, Bertrand I, Machet JM, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus × giganteus, as affected by harvest date and N fertilization. Plant Soil 338(1/2):83–97

    Article  CAS  Google Scholar 

  38. Hamelin L, Jørgensen U, Petersen BM, Olesen JE, Wenzel H (2012) Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: a consequential life cycle inventory. GCB Bioenergy 4(6):889–907

    Article  CAS  Google Scholar 

  39. Jezowski S, Gowacka K, Kaczmarek Z (2011) Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment. Biomass Bioenerg 35(2):814–821

    Article  Google Scholar 

  40. Behnke GD, David MB, Voigt TB (2012) Greenhouse gas emissions, nitrate leaching, and biomass yields from production of Miscanthus × giganteus in Illinois, USA. Bioenergy Res 5(4):801–813

    Article  CAS  Google Scholar 

  41. Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2012) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenergy Res 5(1):61–70

    Article  Google Scholar 

  42. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019

    Article  Google Scholar 

  43. Jørgensen U (1994) Course of yield, nutrient dynamics and time of harvest in Miscanthus. In: Jørgensen U, Hansen, J (eds.). Symposium on Miscanthus. 1994. Research Centre Foulum, Denmark. Statens Planteavlsforsøg Rapport 16: 33–39

  44. Schwarz KU, Kjeldsen JB, Münzer W, Junge R (1998) Low cost establishment and winter survival of Miscanthus × giganteus. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero PL (eds) Biomass for energy and industry. C.A.R.M.E.N, Rimpar, pp 947–950

    Google Scholar 

  45. Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31(2/3):145–152

    Article  Google Scholar 

  46. Cosentino SL, Patane C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25(1):75–88

    Article  Google Scholar 

  47. Mantineo M, D’Agosta GM, Copani V, Patane C, Cosentino SL (2009) Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res 114(2):204–213

    Article  Google Scholar 

  48. Schwarz H, Liebhard P, Ehrendorfer K, Ruckenbauer P (1994) The effect of fertilization on yield and quality of Miscanthus sinensis ‘Giganteus’. Ind Crop Prod 2(3):153–159

    Article  Google Scholar 

  49. Ercoli L, Mariotti M, Masoni A, Bonari E (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crop Res 63(1):3–11

    Article  Google Scholar 

  50. Wang D, Maughan MW, Sun JD, Feng XH, Miguez F, Lee DK, Dietze MC (2012) Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus). GCB Bioenergy 4(6):688–697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The preparation of this paper was supported by the BIORESOURCE project funded by the Danish Council for Strategic Research. The miscanthus trials were funded by the Ministry of Food Agriculture and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poul Erik Lærke.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 32.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, S.U., Jørgensen, U., Kjeldsen, J.B. et al. Long-Term Miscanthus Yields Influenced by Location, Genotype, Row Distance, Fertilization and Harvest Season. Bioenerg. Res. 7, 620–635 (2014). https://doi.org/10.1007/s12155-013-9389-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9389-1

Keywords

Navigation