Skip to main content
Log in

Root System Dynamics of Miscanthus × giganteus and Panicum virgatum in Response to Rainfed and Irrigated Conditions in California

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Miscanthus (Miscanthus × giganteus) and switchgrass (Panicum virgatum) are large perennial grass bioenergy crops in the USA and Europe. Despite much research into their agronomic potential, few studies have examined in situ root growth dynamics under irrigation and soil water deficits, particularly as they relate to shoot performance. We grew miscanthus and switchgrass in outdoor mesocosms under irrigated and rainfed conditions and assessed the spatial distribution and abundance of roots using minirhizotron images and whole root system sampling. Despite surviving an extended period of drought, shoot and root biomass, root length density, numbers of culms, and culm height were reduced in both species under rainfed (dry) conditions. However, rainfed switchgrass far outperformed rainfed miscanthus in all shoot and root growth metrics. The rainfed (drought) treatment reduced switchgrass and miscanthus whole plant biomass by 83 and 98 %, culm production by 67 and 90 %, and root length density by 67 and 94 % compared to irrigated plants, respectively. Root nitrogen concentration was higher for miscanthus (3-fold) and switchgrass (4-fold) in the rainfed treatment compared to irrigated plants and did not significantly differ between species. Unlike miscanthus, switchgrass grew roots continuously into regions of available soil moisture as surface soil layers grew increasingly dry, indicating a drought avoidance strategy. Our study suggests that switchgrass is more likely to tolerate drought by mining deep wet soils, while miscanthus relies on shallow rhizome production to tolerate dry soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conner D, Hernandez C (2009) Crops for biofuels: current status and prospects for the future. In: Bringezu RWHS (ed) Biofuels: environmental consequences and interactions with changing land use. Cornell University Press, Ithaca, p p 65

    Google Scholar 

  2. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9:242. doi:10.1186/gb-2008-9-12-242

    Article  PubMed  Google Scholar 

  3. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci US 108:4307–4312

    Article  CAS  Google Scholar 

  4. Fargione JE, Plevin RJ, Hill JD (2010) The ecological impact of biofuels. Annu Rev Ecol Evol Syst 41:351–377

    Article  Google Scholar 

  5. Fernando AL, Duarte MP, Almeida J, Boleo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioprod Biorefin 4:594–604

    Article  CAS  Google Scholar 

  6. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  PubMed  CAS  Google Scholar 

  7. Schneider R, Kowalczyk K, Welch R, Wells K, Smith H, Coye-Huhn S, Garret G, Pyter R (2011) In: USDA (ed) Proposed BCAP for miscanthus (Miscanthus × giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. USDA, Washington, DC

    Google Scholar 

  8. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  PubMed  CAS  Google Scholar 

  9. Jessup RW (2009) Development and status of dedicated energy crops in the United States. In Vitro Cell Dev Biol Plant 45:282–290

    Article  Google Scholar 

  10. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  11. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  12. Energy Independence and Security Act (2007) in H.R. 2007: USA

  13. McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J (2009) Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS One 4(8):e6802. doi:10.1371/journal.pone.0006802

    Article  PubMed  Google Scholar 

  14. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM et al (2008) Agriculture—sustainable biofuels redux. Science 322:49–50

    Article  PubMed  CAS  Google Scholar 

  15. Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  PubMed  Google Scholar 

  16. US Department of Energy (2011) US billion ton update: biomass supply for a bioenergy and bioproducts industry. Perlack RD, Stokes BJ (Leads) Oak Ridge National Laboratory, Oak Ridge

  17. Chapotin SM, Wolt JD (2007) Genetically modified crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Res 16:675–688

    Article  PubMed  CAS  Google Scholar 

  18. Barney JN, DiTomaso JM (2010) Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 34:124–133

    Article  Google Scholar 

  19. Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30:201–214

    Article  Google Scholar 

  20. Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732

    Article  CAS  Google Scholar 

  21. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. Glob Chang Biol Bioenergy 1:297–307

    Article  CAS  Google Scholar 

  22. Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB (2002) Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol 154:335–345

    Article  Google Scholar 

  23. Richardson DM, Blanchard R (2010) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Environ Sustain 3:36–42

    Google Scholar 

  24. The Royal Society (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London, p 90

  25. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70

    Article  Google Scholar 

  26. Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32:482–493

    Article  Google Scholar 

  27. Glowacka K (2011) A review of the genetic study of the energy crop Miscanthus. Biomass Bioenergy 35:2445–2454

    Article  CAS  Google Scholar 

  28. Stewart RJ, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero GA (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153

    Article  Google Scholar 

  29. Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259

    Article  Google Scholar 

  30. Neukirchen D, Himken M, Lammel J, Czyionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309

    Article  Google Scholar 

  31. Ma Z, Wood CW, Bransby DI (2000) Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18:105–112

    Article  CAS  Google Scholar 

  32. Strzepek K, Boehlert B (2010) Competition for water for the food system. Phil Trans Royal Soc B Biol Sci 365:2927–2940

    Article  Google Scholar 

  33. Schnoor JL (2008) ENVR 187—water implications of biofuels production in the United States. Abstr Pap Am Chem Soc 235:187

    Google Scholar 

  34. Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  35. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  36. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  37. Clifton-Brown JC, Lewandowski I (2000) Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann Bot 86:191–200

    Article  Google Scholar 

  38. Barney JN, DiTomaso JM (2010) Invasive species biology, ecology, management and risk assessment: evaluating and mitigating the invasion risk of biofuel crops. In: Mascia PN et al (eds) Biotechnology in agriculture and forestry. Springer, New York, pp 263–284

  39. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

    Article  PubMed  Google Scholar 

  40. Samson BK, Sinclair TR (1994) Soil core and minirhizotron comparison for the determination of root length density. Plant Soil 161:225–232

    Article  Google Scholar 

  41. AOAC Official Method 972.43 (2006) Microchemical determination of carbon, hydrogen, and nitrogen, automated method, in Official methods of analysis of AOAC International, 18th ed, Rev 1, Chapter 12. AOAC International, Gaithersburg, pp 5–6

    Google Scholar 

  42. Lambers H, Chapin III FS, Pons TL (eds) (2008) Plant physiological ecology, 2nd edn. Springer, Berlin

  43. Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    Article  PubMed  CAS  Google Scholar 

  44. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  45. Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  46. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  47. Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou X, Zanner CW (2009) Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiol 29:157–169

    Article  PubMed  CAS  Google Scholar 

  48. Knapp AK (1985) Effect of fire and drought on the ecophysiology of Andropogon gerardii and Panicum virgatum in a tallgrass prairie. Ecology 66:1309–1320

    Article  Google Scholar 

  49. Heckathorn SA, DeLucia EH (1994) Drought induced nitrogen retranslocation in perennial C4 grasses of tallgrass prairie. Ecology 75:1877–1886

    Article  Google Scholar 

  50. Barker DJ, Sullivan CY, Moser LE (1993) Water deficit effects on osmotic potential, cell-wall elasticity, and proline in five grasses. Agron J 85:270–275

    Article  CAS  Google Scholar 

  51. Weng JH (1993) Photosynthesis of different ecotypes of Miscanthus spp. as affected by water stress. Photosynthetica 29:43–48

    Google Scholar 

  52. Dept. of Environment FaRAS (2007) Planting and growing miscanthus: best practice guidelines. http://www.naturalengland.org.uk/Images/miscanthus-guide_tcm6-4263.pdf. Accessed 29 May 2012

  53. Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD et al (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 13:144–156

    Article  CAS  Google Scholar 

  54. Collins HP, Smith JL, Fransen S, Alva AK, Kruger CE, Granatstein DM (2010) Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production. Soil Sci Soc Am J Abs 74:2049–2058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jimin Zhang for help with data collection and Dr. Chris van Kessel for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DiTomaso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, J.J., Barney, J.N., Kyser, G.B. et al. Root System Dynamics of Miscanthus × giganteus and Panicum virgatum in Response to Rainfed and Irrigated Conditions in California. Bioenerg. Res. 6, 678–687 (2013). https://doi.org/10.1007/s12155-012-9287-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9287-y

Keywords

Navigation