Skip to main content
Log in

Identification of a Selfing Compatible Genotype and Mode of Inheritance in Switchgrass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum L.) is being targeted for use as a dedicated lignocellulosic feedstock crop for producing bioenergy in the United States. The breeding of new switchgrass cultivars with enhanced performance is a research emphasis supporting the targeted use. The species is considered allogamous due to wind facilitated cross-pollination and strong genetic self-incompatibility. Plants typically produce few or no seed when self-fertilized. No attempt has been made to identify selfing-compatible plants that would potentially enable developing inbred lines. Here, using a set of 12 simple sequence repeat-based molecular markers, we identified one lowland plant, ‘NL94 LYE 16 × 13’ (NL94), demonstrating high self-compatibility. A large potted plant of NL94 and a similar size plant of ‘SL93 7 × 15’ were grown in a growth chamber for the purpose of producing a hybrid full-sib mapping population. Marker analyses of 456 progeny from the NL94 plant indicated that 279 (61.2%) and 177 (38.8%) resulted from self- and cross-fertilization, respectively. SSR marker segregation analyses in both the selfed and hybrid progeny populations conclusively indicated disomic inheritance in the two switchgrass parents. Disomic inheritance of switchgrass is significant to the development of switchgrass inbreds as homozygosity is approached much faster via inbreeding under disomic vs. tetrasomic inheritance. Self-compatibility in switchgrass potentially enables the development of inbred lines for use in producing heterotic F1 hybrid cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wright L, Turhollow A (2010) Switchgrass selection as a “model” bioenergy crop: A history of the process. Biomass Bioenergy 34:851–868. doi:10.1016/j.biombioe.2010.01.030

    Article  Google Scholar 

  2. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535. doi:10.1016/j.biombioe.2004.05.006

    Article  Google Scholar 

  3. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105:464–469. doi:10.1073/pnas.0704767105

    Article  PubMed  CAS  Google Scholar 

  4. Jones MD, Brown JG (1951) Pollination cycles of some grasses in Oklahoma. Agronomy J 43:218–222

    Article  Google Scholar 

  5. Talbert LE, Timothy DH, Burns JC, Rawlings JO, Moll RH (1983) Estimates of genetic parameters in switchgrass. Crop Sci 23:725–728

    Article  Google Scholar 

  6. Taliaferro CM, Vogel KP, Bouton JH, McLaughlin SB, Tuskan GA (1999) Reproductive characteristics and breeding improvement potential of switchgrass. In: Biomass, a growth opportunity in green energy and value-added products—Proceedings of the 4th Biomass Conference of the Americas, Oakland, Calif. pp 147-153

  7. Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  8. Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. American Society of Agronomy, Inc, Crop Science Society of America, Inc, Soil Science Society of America, Inc, Madison, pp 561–588

    Google Scholar 

  9. Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558. doi:10.1016/j.gde.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  10. Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: Spaced plants. Crop Sci 48:1312–1320. doi:10.2135/cropsci2007.12.0695

    Article  Google Scholar 

  11. Vogel KP, Mitchell RB (2008) Heterosis in Switchgrass: Biomass Yield in Swards. Crop Sci 48:2159–2164. doi:10.2135/cropsci2008.02.0117

    Article  Google Scholar 

  12. Nielsen EL (1944) Analysis of variation in Panicum Virgatum. J Agric Res 69:327–353

    Google Scholar 

  13. Hopkins AA, Taliaferro CM, Murphy CD, Christian D (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195

    Article  Google Scholar 

  14. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S (1997) DNA content and chloroplast DNA polymorphisms among switchgrasses from remnant Midwestern prairies. Crop Sci 37:595–598

    Article  Google Scholar 

  15. Lu K, Kaeppler S, Vogel K, Arumuganathan K, Lee D (1998) Nuclear DNA content and chromosome numbers in switchgrass. Great Plains Res 8:269–280

    Google Scholar 

  16. Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 3:130–141. doi:10.3835/plantgenome2010.04.0010

    Article  Google Scholar 

  17. Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD (2011) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122:805–817. doi:10.1007/s00122-010-1488-1

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y, Zalapa J, Jakubowski AR, Price DL, Acharya A, Wei Y et al (2011) Natural hybrids and gene flow between upland and lowland switchgrass. Crop Sci 51:2626–2641. doi:10.2135/cropsci2011.02.0104

    Article  Google Scholar 

  19. Porter CL (1966) An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 47:980–992

    Article  Google Scholar 

  20. Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass, Panicum virgatum L. Crop Sci 7:301–304

    Article  Google Scholar 

  21. Martinez-Reyna JM, Vogel KP, Caha C, Lee DJ (2001) Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of upland × lowland switchgrass reciprocal hybrids. Crop Sci 41:1579–1583

    Article  Google Scholar 

  22. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  23. Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110:1372–1383. doi:10.1007/s00122-005-1935-6

    Article  PubMed  CAS  Google Scholar 

  24. Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185:745–760. doi:10.1534/genetics.110.113910

    Article  PubMed  CAS  Google Scholar 

  25. Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  26. Doyle JJ, Doyle JK (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  27. Wu YQ, Huang Y (2008) QTL mapping of sorghum resistance to greenbugs by molecular markers. Theor Appl Genet 117:117–124. doi:10.1007/s00122-008-0757-8

    Article  PubMed  CAS  Google Scholar 

  28. Wang YW, Samuels TD, Wu YQ (2011) Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet 122:677–686. doi:10.1007/s00122-010-1477-4

    Article  PubMed  CAS  Google Scholar 

  29. Mather K (1936) Segregation and linkage in autotetraploids. J Genet 32:287–314

    Article  Google Scholar 

  30. Preacher KJ (2001) Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence. Computer software, Available from http://quantpsy.org

  31. Young H, Hernlem B, Anderton AL, Lanzatella CL, Tobias CM (2010) Dihaploid stocks for switchgrass isolated by a screening approach. BioEnergy Res 3:305–313. doi:10.1007/s12155-010-9081-7

    Article  Google Scholar 

  32. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  33. Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  34. Fehr WR (1993) Principles of cultivar development: volume 1 Theory and Technique. Macmillan Publishing Co., Ames, pp 110–112

    Google Scholar 

  35. Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39:943–954

    Article  Google Scholar 

  36. Posselt UK (1993) Hybrid production in Lolium perenne based on incompatibility. Euphytica 71:29–33

    Article  Google Scholar 

  37. Rotili P, Zannone L (1974) General and specific combining ability in lucerne at different levels of inbreeding and performance of second generation synthetics measured in competitive conditions. Euphytica 23:569–577

    Article  Google Scholar 

  38. Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175–182

    Article  Google Scholar 

  39. Bingham ET (1993) Registration of alfalfa inbred parental line MAG7. Crop Sci 33:1427

    Article  Google Scholar 

  40. Woodfield DR, Bingham ET (1995) Improvement in two-allele autotetraploid populations of alfalfa explained by accumulation of favorable alleles. Crop Sci 35:988–994

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yiwen Xiang and Dr. Yunwen Wang for preparation of the seedlings and isolation of the DNA samples, and Dr. Charles M. Taliaferro for critically reviewing and improving the manuscript. The authors thank Dr. M. Casler, the Editor and two anonymous reviewers for their constructive suggestions and advice. The research was supported by the NSF EPSCoR award EPS 0814361 and Oklahoma Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wu, Y. Identification of a Selfing Compatible Genotype and Mode of Inheritance in Switchgrass. Bioenerg. Res. 5, 662–668 (2012). https://doi.org/10.1007/s12155-011-9173-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9173-z

Keywords

Navigation