Skip to main content
Log in

Clash of the Titans: Comparing Productivity Via Radiation Use Efficiency for Two Grass Giants of the Biofuel Field

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The comparative productivity of switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus) is of critical importance to the biofuel industry. The radiation use efficiency (RUE), when derived in an environment with non-limiting soil water and soil nutrients, provides one metric of relative productivity. The objective of this study was to compare giant Miscanthus to available switchgrass cultivars, using established methods to calculate RUE of the two species at two disparate sites. Measurements of fraction intercepted photosynthetically active radiation (PAR) and dry matter were taken on plots at Elsberry, MO (Miscanthus and the switchgrass cultivars Alamo, Kanlow, and Cave-in-Rock) and at Gustine, TX (Miscanthus and Alamo switchgrass, irrigated with dairy wastewater and a non-irrigated control). In MO, Miscanthus mean RUE (3.71) was less than Alamo switchgrass mean RUE (4.30). In TX under irrigation, Miscanthus mean RUE was 2.24 and Alamo switchgrass mean RUE was 3.20. In MO, the more northern lowland switchgrass cultivar, Kanlow, showed similar mean RUE (3.70) as Miscanthus. In MO, the northern upland cultivar Cave-in-Rock had a mean RUE (3.17) that was only 85% of that for Miscanthus at MO. Stress (water and nutrients) had a greater effect on Miscanthus RUE than on switchgrass RUE in TX. These results provide realistic RUE values for simulating these important biofuel grasses in diverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PAR:

Photosynthetically active radiation in MJ per m2 ground area

IPAR:

Intercepted photosynthetically active radiation in MJ per m2 ground area

FIPAR:

Fraction of intercepted photosynthetically active radiation

RUE:

Radiation use efficiency in g of dry biomass per MJ intercepted photosynthetically active radiation

References

  1. Clifton-Brown JC, Lewandowski I, Andersson B et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  2. Clifton-Brown JC, Long SP, Jørgensen U (2001) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London, pp 46–67

    Google Scholar 

  3. Cosentino SL, Patanè C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind Crops Prod 25:75–88

    Article  Google Scholar 

  4. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  PubMed  CAS  Google Scholar 

  5. Gosse G, Varlet-Grancher C, Bonhomme R, Chartier M, Allirand J, Lermaire G (1986) Production maximale de matière sèche et rayonnement solaire intercepté par un couvert végétal. Agronomie 6:47–56

    Article  Google Scholar 

  6. Heaton EA, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  7. Heaton EA, Dohleman FC, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:1–15

    Article  Google Scholar 

  8. Jones CA, Kiniry JR (eds) (1986) CERES-Maize: a simulation model of maize growth and development. Texas A&M University Press, College Station

    Google Scholar 

  9. Kiniry JR, Bockholt AJ (1998) Maize and sorghum simulation in diverse Texas environments. Agron J 90:682–687

    Article  Google Scholar 

  10. Kiniry JR, Jones CA, O’Toole JC, Blanchet R, Cabelguenne M, Spanel DA (1989) Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Res 20:51–64

    Article  Google Scholar 

  11. Kiniry JR, Williams JR, Gassman PW, Debaeke P (1992) A general, process-oriented model for two competing plant species. Trans ASAE 35(3):801–810

    Google Scholar 

  12. Kiniry JR, Major DJ, Izaurralde RC, Williams JR, Gassman PW, Morrison M et al (1995) EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can J Plant Sci 75:679–688

    Article  Google Scholar 

  13. Kiniry JR, Sanderson MA, Williams JR et al (1996) Simulating Alamo switchgrass with the ALMANAC model. Agron J 88:602–606

    Article  Google Scholar 

  14. Kiniry JR, Williams JR, Vanderlip RL et al (1997) Evaluation of two maize models for nine U.S. locations. Agron J 89(3):421–426

    Article  Google Scholar 

  15. Kiniry JR, Tischler CR, Van Esbroech GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17:95–112

    Article  Google Scholar 

  16. Kiniry JR, Bean B, Xie Y, Chen P (2004) Maize yield potential: critical processes and simulation modeling in a high-yielding environment. Agric Syst 82:45–56

    Article  Google Scholar 

  17. Kiniry JR, Cassida KA, Hussey MA et al (2005) Switchgrass simulation by the ALMANAC model at diverse sites in the southern U.S. Biomass Bioenergy 29:419–425

    Article  Google Scholar 

  18. Kiniry JR, Schmer MR, Vogel KP, Mitchell R (2008) Switchgrass biomass simulation at diverse sites in the northern Great Plains of the U.S. BioEnergy Res 1(3–4):259–264

    Article  Google Scholar 

  19. Kiniry JR, Lynd L, Greene N, Johnson MM-V, Casler M, Laser MS (2008b) Biofuels and water use: comparison of maize and switchgrass and general perspectives. In: New Research in Biofuels, Nova, pp 17–30

  20. Lindquist JL, Arkebauer TJ, Walters DT, Cassman KG, Dobermann A (2005) Maize radiation use efficiency under optimal growth conditions. Agron J 97:72–78

    Article  Google Scholar 

  21. Madakadze IC, Stewart K, Peterson PR, Coulman BE, Samson R, Smith DL (1998) Light interception, use-efficiency, and energy yield of switchgrass (Panicum virgatum L.) grown in a short season area. Biomass Bioenergy 15:475–482

    Article  Google Scholar 

  22. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  23. McLaughlin SB, De La Torre Ugarte DG, Garten CT Jr et al (2002) High value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129

    Article  PubMed  CAS  Google Scholar 

  24. McLaughlin SB, Kiniry JR, Taliaferro CM, De LaTorre Ugarte UD (2006) Projecting yield and utilization potential of switchgrass as an energy crop. Adv Agron 90:267–297

    Article  Google Scholar 

  25. Meek DW, Hatfield JL, Howell TA, Idso SB, Reginato RJ (1984) A generalized relationship between photosynthetically active radiation and solar radiation. Agron J 76:939–945

    Article  Google Scholar 

  26. Monsi M, Saeki T (1953) Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  27. Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B 281:277–329

    Article  Google Scholar 

  28. Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models. Irwin. 1127 pp

  29. Sanderson MA, Reed RL, Ocumpaugh WL, Hussey MA, Van Esbroeck G, Read JC (1999) Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresour Technol 67:209–219

    Article  CAS  Google Scholar 

  30. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325

    Article  Google Scholar 

  31. SAS Inst (1989) SAS/STAT user’s guide. Version 6. Vol 2, 4th edn. SAS Inst., Cary

    Google Scholar 

  32. Tollenaar M, Aguilera A (1992) Radiation use efficiency of an old and a new maize hybrid. Agron J 84:536–541

    Article  Google Scholar 

  33. Warren-Wilson J (1967) Ecological data on dry matter production by plants and plant communities. In: Bradley EF, Denmead OT (eds) The collection and processing of field data. Wiley-Interscience, New York, pp 77–123

    Google Scholar 

  34. Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27:129–144

    Google Scholar 

  35. Xie Y, Kiniry JR, Nedbalek V, Rosenthal WD (2001) Maize and sorghum simulations with CERES-Maize, SORKAM, and ALMANAC under water-limiting conditions. Agron J 93:1148–1155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Robert Kiniry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiniry, J.R., Johnson, MV.V., Bruckerhoff, S.B. et al. Clash of the Titans: Comparing Productivity Via Radiation Use Efficiency for Two Grass Giants of the Biofuel Field. Bioenerg. Res. 5, 41–48 (2012). https://doi.org/10.1007/s12155-011-9116-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9116-8

Keywords

Navigation