Skip to main content

Advertisement

Log in

Developmental Control of Lignification in Stems of Lowland Switchgrass Variety Alamo and the Effects on Saccharification Efficiency

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The switchgrass variety Alamo has been chosen for genome sequencing, genetic breeding, and genetic engineering by the US Department of Energy Joint Genome Institute (JGI) and the US Department of Energy BioEnergy Science Center. Lignin has been considered as a major obstacle for cellulosic biofuel production from switchgrass biomass. The purpose of this study was to provide baseline information on cell wall development in different parts of developing internodes of tillers of switchgrass cultivar Alamo and evaluate the effect of cell wall properties on biomass saccharification. Cell wall structure, soluble and wall-bound phenolics, and lignin content were analyzed from the top, middle, and bottom parts of internodes at different developmental stages using ultraviolet autofluorescence microscopy, histological staining methods, and high-performance liquid chromatography (HPLC). The examination of different parts of the developing internodes revealed differences in the stem structure during development, in the levels of free and well-bound phenolic compounds and lignin content, and in lignin pathway-related gene expression, indicating that the monolignol biosynthetic pathway in switchgrass is under complex spatial and temporal control. Our data clearly show that there was a strong negative correlation between overall lignin content and biomass saccharification efficiency. The ester-linked p-CA/FA ratio showed a positive correlation with lignin content and a negative correlation with sugar release. Our data provide baseline information to facilitate genetic modification of switchgrass recalcitrance traits for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opi Genet Dev 17:553–558

    Article  CAS  Google Scholar 

  2. McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  3. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105:464–469

    Article  CAS  PubMed  Google Scholar 

  4. Monti A, Bezzi G, Pritoni G, Venturi G (2008) Long-term productivity of lowland and upland switchgrass cytotypes as affected by cutting frequency. Biores Technol 99:7425–7432

    Article  CAS  Google Scholar 

  5. Stroup JA, Sanderson MA, Muir JP, McFarland MJ, Reed RL (2003) Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Biores Technol 86:65–72

    Article  CAS  Google Scholar 

  6. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 25:759–761

    Article  CAS  Google Scholar 

  7. Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  PubMed  Google Scholar 

  8. Sarath G, Akin DE, Mitchell RB, Vogel KP (2008) Cell-wall composition and accessibility to hydrolytic enzymes is differentially altered in divergently bred switchgrass (Panicum virgatum L.) genotypes. Appl Biochem Biotechnol 150:1–14

    Article  CAS  PubMed  Google Scholar 

  9. Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum. L). Biores Technol 98:2985–2992

    Article  CAS  Google Scholar 

  10. Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077

    Google Scholar 

  11. Escamilla-Treviño LL, Shen H, Uppalapati SR, Ray T, Tang Y, Hernandez T, et al (2009) Switchgrass (Panicum virgatum L.) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol doi:10.1111/j.1469-8137.2009.03018.x

  12. Chen L, Auh C, Chen F, Cheng X, Aljoe H, Dixon RA et al (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50:5558–5565

    Article  CAS  PubMed  Google Scholar 

  13. Jung HG, Casler MD (2006) Maize stem tissues: cell wall concentration and composition during development. Crop Sci 46:1793–1800

    Article  CAS  Google Scholar 

  14. Wilson JR (1993) Organization of forage plant tissues. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASSA-CSSA-SSSA, Madison, pp 1–32

    Google Scholar 

  15. Chesson A, Provan GJ, Russell W, Scobbie L, Chabbert B, Monties B (1997) Characterisation of lignin from parenchyma and sclerenchyma cell walls of the maize internode. J Sci Food Agric 73:10–16

    Article  CAS  Google Scholar 

  16. Grabber JH, Jung GA, Hill RR Jr (1991) Chemical composition of parenchyma and sclerenchyma cell walls isolated from orchardgrass and switchgrass. Crop Sci 31:1058–1065

    Article  CAS  Google Scholar 

  17. Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57:2337–2344

    CAS  PubMed  Google Scholar 

  18. Grabber JH, Ralph J, Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48:6106–6113

    Article  CAS  PubMed  Google Scholar 

  19. Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in weat internodes. Phytochemistry 29:733–737

    Article  CAS  Google Scholar 

  20. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydrate Res 275:167–178

    Article  CAS  Google Scholar 

  21. Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  22. Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu F et al (2009) Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta 229:1253–1267

    Article  CAS  PubMed  Google Scholar 

  23. Bushman BS, Snook ME, Gerke JP, Szalma SJ, Berhow MA, Houchins KE et al (2002) Two loci exert major effects on chlorogenic acid synthesis in maize silks. Crop Sci 42:1669–1678

    CAS  Google Scholar 

  24. Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806

    Article  CAS  PubMed  Google Scholar 

  25. Dien BS, Jung HG, Vogel KP, Casler MD, Lamb J, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891

    Article  CAS  Google Scholar 

  26. Jung HG, Casler MD (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46:1801–1809

    Article  CAS  Google Scholar 

  27. Du L, Yu P, Rossnagel BG, Christensen DA, McKinnon JJ (2009) Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, p-coumaric acid) and their ratio, and in situ biodegradability: comparison of genotypic differences among six barley varieties. J Agric Food Chem 57:4777–4783

    Article  CAS  PubMed  Google Scholar 

  28. Grabber JH, Ralph J, Hatfield RD (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614

    Article  CAS  Google Scholar 

  29. Grabber JH, Ralph J, Lapierre C, Barriere Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol 327:455–465

    Article  CAS  PubMed  Google Scholar 

  30. Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon RA (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. BioEnergy Res 1:180–192

    Article  Google Scholar 

  31. Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B et al (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  CAS  PubMed  Google Scholar 

  32. Guillaumie S, Goffner D, Barbier O, Martinant JP, Pichon M, Barriere Y (2008) Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC Plant Biol 8:71–86

    Article  PubMed  CAS  Google Scholar 

  33. Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA (2008) Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol 179:738–750

    Article  CAS  PubMed  Google Scholar 

  34. Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  CAS  PubMed  Google Scholar 

  35. Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–632

    Article  CAS  PubMed  Google Scholar 

  36. Lapierre C, Monties B, Rolando C (1986) Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions. Holzforschung 40:113–118

    Article  CAS  Google Scholar 

  37. Lapierre C, Monties B, Rolando C, de Chirale L (1985) Thioacidolysis of lignin: comparison with acidolysis. J Wood Chem Technol 5:277–292

    Article  CAS  Google Scholar 

  38. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  39. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  40. Ranasinghe S, Rogers ME, Hamilton JGC, Bates PA, Maingon RDC (2008) A real time PCR assay to estimate Leishmania chagasi load in its natural sand fly vector Lutzomyia longipalpis. Trans R Soc Trop Med Hyg 102:875–882

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Hiroshi Hisano and Luis Escamilla-Trevino for sharing switchgrass lignin biosynthetic gene sequences, David Huhman and Mohamed Bedair for assistance with MS analysis, and Dr. Richard A. Dixon for useful discussions. This work was supported by the US Department of Energy BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Additional information

H. Shen and C. Fu are contributed equally to this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Figure S1

Relationships between lignin content and wall-bound phenolic deposition. Data for field-grown switchgrass materials were used for correlation analysis. ad Correlation of lignin content and lignin composition. eh Correlation of lignin content and wall bound phenolics deposition. (PPTX 83.7 kb)

Table S1

Parameters used for collection of the switchgrass internodes. (PPTX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Fu, C., Xiao, X. et al. Developmental Control of Lignification in Stems of Lowland Switchgrass Variety Alamo and the Effects on Saccharification Efficiency. Bioenerg. Res. 2, 233–245 (2009). https://doi.org/10.1007/s12155-009-9058-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-009-9058-6

Keywords

Navigation