Skip to main content
Log in

A comparison of SIMION and LORENTZ for IMS simulation

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Simulation of IMS systems is important for gaining insight into the role of its geometric and operational parameters. Using two simulation programs, SIMION and LORENTZ, this study looks into questions pertaining to miniaturization, dimensional disparity across different geometrical axes, and the drift cell medium, both gas and liquid phase. Additionally, we address key physics issues related to space-charge effects and induced current by varying gate pulse width and input charge. This study determines the comparative merits of the two simulation programs, from both computational effectiveness and efficiency standpoints. We explain the necessary techniques for applying these programs to IMS, and we describe similarities and differences of the methods of the programs and how they affect their suitability for simulation of IMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Appelhans AD, Dahl DA (2005) SIMION ion optics simulations at atmospheric pressure. Int J Mass Spectrom 244:1–14

    Article  CAS  Google Scholar 

  2. Bamji SS, Bulinski AT, Prasad KM (1993) Electric field calculations with the boundary element method. IEEE Trans Electr Insu 28(3):420–424

    Article  Google Scholar 

  3. Barth S, Baether W, Zimmermann S (2009) System design and optimization of a miniaturized ion mobility spectrometer using finite-element analysis. IEEE Sensors J 9(4):377–382. doi:10.1109/JSEN.2009.2014411

    Article  CAS  Google Scholar 

  4. Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry arriving on site and moving beyond a low profile. Appl Spectrosc 53(9):338A–355A

    Article  CAS  Google Scholar 

  5. Brebbia CA (ed.) (1989) Topics in boundary element research electromagnetic applications. Springer

  6. COMSOL Conference (2010) COMSOL modelling of a planar micro ion mobility spectrometer

  7. Dahl DA, McJunkin TR, Scott JR (2007) Comparison of ion trajectories in vacuum and viscous environments using SIMION Insights for instrument design. Int J Mass Spectrom 266:156–165

    Article  CAS  Google Scholar 

  8. Davis EJ, Grows KF, Siems WF, Hill Jr HH (2012) Improved ion mobility resolving power with increased buffer gas pressure. Anal Chem 84(11):4858–4865. doi:10.1021/ac300452j. PMID: 22591048

    Article  CAS  Google Scholar 

  9. Eiceman GA, Karpas Z, Hill Jr HH (2013) Ion mobility spectrometry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  10. Eiceman GA, Nazarov EG, Stone JA, Rodriguez JE (2001) Analysis of a drift tube at ambient pressure: models and precise measurements in ion mobility spectrometry. Rev Sci Instrum 72:3610–3621

    Article  CAS  Google Scholar 

  11. Gazda E (1963) Measurement of ion diffusion coefficient in liquid n-hexane. Nat 200(4908):767–768. doi:10.1038/200767a0

    Article  CAS  Google Scholar 

  12. Guharay SK, Dwivedi P, Hill HH (2008) Ion mobility spectrometry ion source development and applications in physical and biological sciences. IEEE Trans Plasma Sci 36(4):1458–1470. doi:10.1109/TPS.2008.927290

    Article  CAS  Google Scholar 

  13. He Z (2001) Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Inst Methods Phys Res A 463:250–267

    Article  CAS  Google Scholar 

  14. Henson BL (1970) Positive-ion mobilities in liquid helium I. Phys Rev Lett 24:1327–1329

    Article  CAS  Google Scholar 

  15. Ilbeigi V, Tabrizchi M (2012) Peak-peak repulsion in ion mobility spectrometry. Anal Chem 84(8):3669–3675. doi:10.1021/ac3001447. PMID: 22455316

    Article  CAS  Google Scholar 

  16. Johnson C (2009) Numerical solutions of partial differential equations by the finite element method. Dover Publications, New York

    Google Scholar 

  17. Kanu AB, Dwivedi P, Tam M, Matz L, Hill Jr HH (2008) Ion mobility–mass spectrometry. J Mass Spectrom 43(1):1–22. doi:10.1002/jms.1383

    Article  CAS  Google Scholar 

  18. Kirk AT, Allers M, Cochems P, Langejuergen J., Zimmermann S (2013) A compact high resolution ion mobility spectrometer for fast trace gas analysis. Anal 138:5200–5207 . doi:10.1039/C3AN00231D

    Article  CAS  Google Scholar 

  19. Lai H, McJunkin TR, Miller CJ, Scott JR, Almirall JR (2008) The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments. Int J Mass Spectrom 276(1):1–8. doi:10.1016/j.ijms.2008.06.011. http://www.sciencedirect.com/science/article/B6VND-4STYV4R-1/2/8a36faf71af7424ae3d5dbc2424b16de

    Article  CAS  Google Scholar 

  20. Lamabadasuriya MR, Siems WF, Hill Jr HH, Mariano A, Guharay SK (2014) Ion mobility spectrometry in liquid phase. ISIMS

  21. Lamabadusuriya MR, Siems WF, Hill Jr. HH, Mariano A, Guharay SK (2012) Ionization, transport, separation, and detection of ions in non-electrolyte containing liquids. Anal Chem 84(21):9295–9302. doi:10.1021/ac302022d

    CAS  Google Scholar 

  22. Langejuergen J, Cochems P, Zimmermann S. (2012) Results of a transient simulation of a drift tube ion mobility spectrometer considering charge repulsion, ion loss at metallic surfaces and ion generation. Int J Ion Mobil Spectrom 15:247–255. doi:10.1007/s12127-012-0095-z

    Article  CAS  Google Scholar 

  23. Levin M, Krisilov A, Zon B, Eiceman G (2014) The effect of space charge in ion mobility spectrometry. Int. J. Ion Mobil Spectrom. doi:10.1007/s12127-014-0151-y

    Google Scholar 

  24. Li F, Xie Z, Schmidt H, Sielemann S, Baumbach JI (2002) Ion mobility spectrometer for online monitoring of trace compounds. Spectrochimica Acta Part B 57(10). doi:10.1016/S0584-8547(02)00110-6

  25. Manura DJ, Dahl DA (2006) SIMIONTM version 8.0 user manual, chap. Computational methods, pp. H–1. Scientific Instrument Services, Inc, Idaho

    Google Scholar 

  26. Mariano AV, Su W, Guharay SK (2009) Effect of space charge on resolving power and ion loss in ion mobility spectrometry. Anal Chem 81(9):3385–3391

    Article  CAS  Google Scholar 

  27. Marshall M, Oxley JC (2008) Aspects of explosives detection. Elsevier Science, Amsterdam

    Google Scholar 

  28. Matz LM, Tornatore PS, Hill HH (2001) Evaluation of suspected interferents for tnt detection by ion mobility spectrometry. Talanta 54:171–179

    Article  CAS  Google Scholar 

  29. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  Google Scholar 

  30. Siems WF, Wu C, Tarver EE, Hill Jr HH, Larsen PR, McMinn DG (1994) Measuring the resolving power of ion mobility spectrometers. Anal Chem 66(23):4195–4201 . doi:10.1021/ac00095a014

    Article  CAS  Google Scholar 

  31. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Book  Google Scholar 

  32. Spangler GE (1992) Space charge effects in ion mobility spectrometry. Anal Chem 64(11):1312–1312. doi:10.1021/ac00035a020

    Article  CAS  Google Scholar 

  33. Spangler GE (2010) Theory for inverse pulsing of the shutter grid in ion mobility spectrometry. Anal Chem 82(19):8052–8059. doi:10.1021/ac100240t. PMID: 20828136

    Article  CAS  Google Scholar 

  34. Spangler GE, Collins CI (1975) Peak shape analysis and plate theory for plasma chromatography. Anal Chem 47(3):403–407. doi:10.1021/ac60353a013

    Article  CAS  Google Scholar 

  35. Stojmenovik G, Vermael S, Beunis F, Neyts K, Verschueren ARM (2007) Monte Carlo algorithm for drift and diffusion of ions in anisotropic, non-homogeneous media. Opto-Electron Rev 15(1):13–19. doi:10.2478/s11772-006-0049-2

    Article  CAS  Google Scholar 

  36. Tam M, Hill Jr HH (2011) Liquid phase ion mobility spectrometry. Analyst 136(15):3098–3106. doi:10.1039/c0an00671h

    Article  CAS  Google Scholar 

  37. Tolmachev AV, Clowers BH, Belov ME, Smith RD (2009) Coulombic effects in ion mobility spectrometry. Anal Chem 81(12):4778–4787. doi:10.1021/ac900329x. PMID:19438247

    Article  CAS  Google Scholar 

  38. Tolmachev AV, Clowers BH, Belov ME, Smith RD (2009) Coulombic effects in ion mobility spectrometry. Anal Chem 12:4778–4787. doi:10.1021/ac900329x

    Article  Google Scholar 

  39. Wilkins CL, Trimpin S (2010) Ion Mobility spectrometry – mass spectrometry theory and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  40. Woodfin RL (2007) Trace Chemical Sensing of Explosives. Wiley-Interscience

  41. Wu C, Siems WF, Asbury GR, Hill Jr HH (1998) Electrospray ionization high-resolution ion mobility spectrometry–mass spectrometry. Anal Chem 70(23):4929–4938

    Article  CAS  Google Scholar 

  42. Xu J, Whitten WB (2008) Monte Carlo simulation of ion transport in ion mobility spectrometry. Intl J Ion Mobil Spectrom 11:13–17. doi:10.1007/s12127-008-0001-x

    Article  CAS  Google Scholar 

  43. Xu J, Whitten WB, Ramsey JM (2000) Space charge effects on resolution in a miniature ion mobility spectrometer. Anal Chem 72:5787–5791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the iSPE MITRE Innovation Program. We thankfully acknowledge valuable technical discussions and direct support on this topic from the Defense Threat Reduction Agency and Joint Project Manager for Nuclear Biological Chemical Contamination Avoidance. We thank Jarosław Puton for valuable discussions about induced current and we also thank David Manura for his help on many questions related to SIMION implementation of IMS. We thank Wangsheng Su for collecting experimental data at MITRE. We also thank Prof. Herbert H. Hill, Jr. and his team at the Washington State University for collaboration on IMS experiments and related discussions. This technical data was produced for the U. S. Government under Contract No. W15P7T-13-C-A802, and is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS 252.227-7013 (FEB 2012). Distribution Statement A: Approved for Public Release, Distribution Unlimited, Case No. 15-0813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian V. Mariano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, A.V., Guharay, S.K. A comparison of SIMION and LORENTZ for IMS simulation. Int. J. Ion Mobil. Spec. 18, 117–128 (2015). https://doi.org/10.1007/s12127-015-0180-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-015-0180-1

Keywords

Navigation