Skip to main content
Log in

Signals in asbestos related diseases in human breath - preliminary results

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Several diseases occur due to asbestos exposure. Until today, asbestos predicted mortality and morbidity will increase because of the long latency period. Actually, the methods to investigate asbestos related disease are mostly invasive. Therefore, the aim of the present paper was to investigate, whether signals in human breath could be correlated to Asbestos related lung diseases using a multi-capillary column (MCC) connected to an ion mobility spectrometer (IMS) as non-invasive method. Here, the breath samples of 10 mL of 25 patients suffering from asbestos related diseases. This group includes patients with asbestos related pleural thickening with and without pulmonary fibrosis. Twelve healthy persons constitute the control group and the breath samples are compared with those of the BK4103 patients. In total 83 peaks are found in the IMS-Chromatogram. A discrimination was possible with p-values <0.001 for two peaks (99.9 %), <0.01 (99 %) for 5 peaks and <0.05 (95 %) for 17 peaks. The most discrimination peaks alpha pinene and 4-ethyltoluol were identified among some others with lower p-values. The corresponding Box-and-Whisker-Plots comparing both groups are presented. In addition, a decision tree including all peaks was created that shows a differentiation with alpha pinene between BK4103 (pleural plaques group) and the control group. In addition, the sensitivity was calculated to 96 %, specificity was 50 %, positive and negative predictive values were 80 % and 86 %. Ion mobility spectrometry was introduced as non-invasive method to separate both groups Asbestos related and healthy. Naturally, the findings need further confirmation on larger population groups, but encourage further investigations, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manning CB, Vallyathan V, Mossman BT (2002) Diseases caused by asbestos: mechanisms of injury and disease development. Int Immunopharmacol 2:191–200

    Article  CAS  Google Scholar 

  2. Ross MH, Murray J (2004) Occupational respiratory disease in mining. Occup Med 54:304–310

    Article  CAS  Google Scholar 

  3. Bolton C, Richards A, Ebden P (2002) Asbestos-related disease. Hosp Med 63:148–151

    Article  CAS  Google Scholar 

  4. American Thoracic Society (2004) Diagnosis and initial management of non-malignant diseases related to asbestos. Am J Respir Crit Care Med 170:691–715

    Article  Google Scholar 

  5. Bundesministerium für Arbeit und Sozialordnung (1991) Merkblatt zur BKNr. 4103: Asbeststaublungenerkrankung (Asbestose) oder durch Asbeststaub verursachte Erkrankung der Pleura. Merkblatt fur die arztliche Untersuchung. Bek. d. BMA v. 13. 05. 1991. BArbBl: 74–76

  6. Bundesministerium für Arbeit und Sozialordnung (1997) Merkblatt zur BK Nr. 4104: Lungenkrebs oder Kehlkopfkrebs in Verbindung mit Asbeststaublungenerkrankung (Asbestose), in Verbindung mit durch Asbeststaub verursachter Erkrankung der Pleura oder bei Nachweis der Einwirkung einer kumulativen Asbestfaserstaub-Dosis am Arbeitsplatz von mindestens 25 Faserjahren (25 × 106 [(Fasern/m3) × Jahre]) Bek. des BMA v. 1.12.1997- IVa 4–45206. BArbBl: 32–35

  7. Bundesministerium für Arbeit und Sozialordnung (1994) Merkblatt zur BK Nr. 4105: Durch Asbest verursachtes Mesotheliom des Rippenfells, des Bauchfells oder des Pericards. Merkblatt fur die arztliche Untersuchung. Bek. des BMA v. 8. 11. 1993. BArbBl: 67

  8. Chapman EA, Thomas PS, Yates DH (2010) Breath analysis in asbestos-related disorders: a review of the literature and potential future applications. J Breath Res 4:034001/034001–034001/034011. doi:10.1088/1752-7155/4/3/034001

    Article  Google Scholar 

  9. Diagnostics and Expert Opinion of Asbestos-induced Occupational Diseases (2011) Interdisciplinary Guideline of the German Respiratory Society and the German Society of Occupational and Environmental Medicine, Bibliografie DOI http://dx.doi.org/10.1055/s-0030-1255992, Online-Publikation: 18. 1.2011 Pneumologie 2011; 65: e1–e47 © Georg Thieme Verlag KG Stuttgart New York ISSN 0934–8387

  10. Chow S (2009) Non-invasive measurement of markers of oxidative stress in asbestos-related lung diseases and pulmonary fibrosis PhD thesis. The University of New South Wales

  11. King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H, Filipiak W, Teschl S, Hinterhuber H, Amann A (2010) Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas 31:1169–1184. doi:10.1088/0967-3334/31/9/008

    Article  CAS  Google Scholar 

  12. Thekedar B, Szymczak W, Hoellriegl V, Hoeschen C, Oeh U (2009) Investigations on the variability of breath gas sampling using PTR-MS. J Breath Res 3:027007/027001–027007/027011

    Article  Google Scholar 

  13. Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:027002/027001–027002/027015

    Google Scholar 

  14. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    Article  CAS  Google Scholar 

  15. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS). - Medical Applications, Food Control and Environmental Research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  16. Hornuss C, Wiepcke D, Praun S, Dolch ME, Apfel CC, Schelling G (2012) Time course of expiratory propofol after bolus injection as measured by ion molecule reaction mass spectrometry. Anal Bioanal Chem 403:555–561. doi:10.1007/s00216-012-5856-3

    Article  CAS  Google Scholar 

  17. Tegtmeyer U, Weiss HP, Schlägl HP (1993) Gas analysis by IMR-MS: a comparison to conventional mass spectrometry. Fresenius J Anal Chem 347:263–268

    Article  CAS  Google Scholar 

  18. Belda-Iniesta C et al (2007) New screening method for lung cancer by detecting volatile organic compounds in breath. Clin Transl Oncol Field 9:364–368

    Article  CAS  Google Scholar 

  19. Cheng ZJ, Warwick G, Yates DH, Thomas PS (2009) An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J Breath Res 3:036003/036001–036003/036005

    Article  Google Scholar 

  20. Machado Roberto F et al (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171:1286–1291

    Article  CAS  Google Scholar 

  21. Guaman AV, Carreras A, Calvo D, Agudo I, Navajas D, Pardo A, Marco S, Farre R (2012) Rapid detection of sepsis in rats through volatile organic compounds in breath. J Chromatogr B Anal Technol Biomed Life Sci 881–882:76–82

    Article  Google Scholar 

  22. Kushch I et al (2008) Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath versus non-smokers as determined in a pilot study using PTR-MS. J Breath Res 2:026002/026001–026002/026026

    Article  Google Scholar 

  23. Miekisch W, Schubert JK, Vagts DA, Geiger K (2001) Analysis of volatile disease markers in blood. Clin Chem 47:1053–1060

    CAS  Google Scholar 

  24. Buchinger H, Kreuer S, Hellbrück R, Wolf A, Fink T, Volk T, Bödeker B, Maddula S, Baumbach JI (2013) Minimal retarded Propofol signals in human breath using ion mobility spectrometry. Int J Ion Mobil Spectrom 16:191–198

    Article  Google Scholar 

  25. Zhou Q, Wang W, Cang H, Du Y, Han F, Chen C, Cheng S, Li J, Li H (2012) On-line measurement of propofol using membrane inlet ion mobility spectrometer. Talanta 98:241–246. doi:10.1016/j.talanta.2012.07.001

    Article  CAS  Google Scholar 

  26. Kreuder A-E, Buchinger H, Kreuer S, Volk T, Maddula S, Baumbach JI (2011) Characterization of propofol in human breath of patients undergoing anesthesia. Int J Ion Mobil Spectrom 14:167–175. doi:10.1007/s12127-011-0080-y

    Article  CAS  Google Scholar 

  27. Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, Junger M (2009) Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth 103:822–827. doi:10.1093/bja/aep312

    Article  CAS  Google Scholar 

  28. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3:1–16

    Article  Google Scholar 

  29. Hauschild A–C, Kopczynski D, D’Addario M, Baumbach JI, Rahmann S, Baumbach J (2013) Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches. Metabolites 3:277–293

    Article  CAS  Google Scholar 

  30. Cumeras R, Figueras E, Gracia I, Maddula S, Baumbach JI (2013) What is a good control group? Int J Ion Mobil Spectrom 16:1–8

    Article  Google Scholar 

  31. Jünger M, Vautz W, Kuhns M, Hofman L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new pathogen identification tool by smelling human pathogenic bacteria. Appl Microbiol Biotechnol 93:2603–2614. doi:10.1007/s00253-012-3924-4

    Article  Google Scholar 

  32. Cumeras R, Schneider T, Favrod P, Figueras E, Gracia I, Maddula S, Baumbach JI (2012) Stability and alignment of MCC/IMS devices. Int J Ion Mobil Spectrom 15:41–46

    Article  Google Scholar 

  33. Cumeras R, Favrod P, Rupp K, Figueras E, Gracia I, Maddula S, Baumbach JI (2012) Influence of operational background emissions on breath analysis using MCC/IMS devices. Int J Ion Mobil Spectrom 15:69–78. doi:10.1007/s12127-012-0094-0

    Article  CAS  Google Scholar 

  34. Westhoff M, Litterst P, Maddula S, Bödeker B, Baumbach JI (2011) Statistical and bioinformatical methods to differentiate chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control by breath analysis using ion mobility spectrometr. Int J Ion Mobil Spectrom 11:139–149. doi:10.1007/s12127-011-0081-x

    Article  Google Scholar 

  35. Rabis T, Sommerwerck U, Anhenn O, Darwiche K, Freitag L, Teschler H, Bödeker B, Maddula S, Baumbach JI (2011) Detection of infectious agents in the airways by ion mobility spectrometry of exhaled breath. Int J Ion Mobil Spectrom 11:187–195. doi:10.1007/s12127-011-0077-6

    Article  Google Scholar 

  36. Darwiche K, Baumbach JI, Sommerwerck U, Teschler H, Freitag L (2011) Bronchoscopically obtained Volatile Biomarkers in Lung Cancer. Lung 189:445–452. doi:10.1007/s00408-011-9324-1

    Article  CAS  Google Scholar 

  37. Baumbach JI, Maddula S, Sommerwerck U, Besa V, Kurth I, Bödeker B, Teschler H, Freitag L, Darwiche K (2011) Significant different volatile biomarker during bronchoscopic ion mobility spectrometry investigation of patients suffering lung carcinoma. Int J Ion Mobil Spectrom 14:159–166. doi:10.1007/s12127-011-0078-5

    Article  CAS  Google Scholar 

  38. Vautz W, Baumbach JI, Westhoff M, Zuechner K, Carstens ETH, Perl T (2010) Breath sampling control for medical application. Int J Ion Mobil Spectrom 13:41–46

    Article  CAS  Google Scholar 

  39. Maddula S, Blank L, Schmid A, Baumbach JI (2009) Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal Bioanal Chem 394:791–800

    Article  CAS  Google Scholar 

  40. Vautz W, Baumbach JI (2008) Analysis of bio-processes using ion mobility spectrometry. Eng Life Sci 8:19–25

    Article  CAS  Google Scholar 

  41. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070

    Article  CAS  Google Scholar 

  42. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084:145–151

    Article  CAS  Google Scholar 

  43. Kusaka Y, Hering KG, Parker JE (2005) International classification of high-resolution computed tomography for occupational and environmental respiratory diseases. Springer, Tokio

    Google Scholar 

  44. Hering KG, Tuengerthal S, Kraus T (2004) Standardisierte CT/HRCT-Klassifikation der Bundesrepublik Deutschland fur arbeits- und umweltbedingte Thoraxerkrankungen. Radiologe 44:500–511

    Article  CAS  Google Scholar 

  45. Hering KG, Kraus T (2005) Coding CT-classification in occupational and environmental respiratory disease (OERD). In: Kusaka Y, Hering KG, Parker JE (eds) International classification of HRCT for occupational and environmental respiratory diseases. Springer, Tokyo, pp 15–23

    Chapter  Google Scholar 

  46. Hosoda Y (2005) ILO International classification of radiographs of pneumoconioses past, presence and future. In: Kusaka Y, Hering KG, Parker JE (eds) International classification of high-resolution computed tomography for occupational and environmental respiratory diseases. Springer, Tokio

    Google Scholar 

  47. Hosoda Y (2005) ILO International classification of radiographs of pneumoconioses–past, presence and future. In: Kusaka Y, Hering KG, Parker JE (eds) International classification of high-resolution computed tomography for occupational and environmental respiratory diseases. Springer, Tokio

    Google Scholar 

  48. International Labour Office (2002) Guidelines for the use of the ILO international classification of radiographs of pneumoconioses. Rev. 2000. International Labour Office, Geneva

    Google Scholar 

  49. Hering KG (2003) Inhalationsschaden. In: Freyschmidt J, Galanski M (eds) Handbuch diagnostische radiologie. Springer, Thorax, pp 355–394

    Google Scholar 

  50. Bohlig H, Hain E, Valentin H et al (1981) Die Weiterentwicklung der Internationalen Staublungenklassifikation und ihre Konsequenzen fur die arbeitsmedizinischen Vorsorgeuntersuchungen staubgefährdeter Arbeitnehmer (ILO 1980/Bundesrepublik). Prax Pneumol 35:1075–1154

    Google Scholar 

  51. Jünger M, Bödecker B, Baumbach JI (2010) Peak asignment in multi-capillary column—ion mobility spectrometry using comparative studies with gas chromatography—mass spectrometry for exhaled breath analysis. Anal Bioanal Chem 396:471–482

    Article  Google Scholar 

  52. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64:744–748

    Article  CAS  Google Scholar 

  53. Bunkowski A, Boedeker B, Bader S, Westhoff M, Litterst P, Baumbach JI (2009) MCC/IMS signals in human breath related to sarcoidoses-results of a feasibility study using an automated peak finding procedure. J Breath Res 3:046001/046001–046001/046010

    Article  Google Scholar 

  54. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of sarcoidoses: results of a feasibility study. J Physiol Pharmacol 58:739–752

    Google Scholar 

  55. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer an airway infections. Spectrosc Eur 18:22–27

    CAS  Google Scholar 

  56. Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Detection of the mold markers using ion mobility spectrometry. Int J Ion Mobil Spectrom 6:53–57

    CAS  Google Scholar 

  57. Bödeker B, Baumbach JI (2009) Analytical description of IMS-signals. Int J Ion Mobil Spectrom 12:103–108. doi:10.1007/s12127-009-0024-y

    Article  Google Scholar 

  58. Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referencing in MCC/IMS-data. Int J Ion Mobil Spectrom 11:83–88

    Article  Google Scholar 

  59. Bödeker B, Vautz W, Baumbach JI (2008) Peak comparison in MCC/IMS-data-searching for potential biomarkers in human breath data. Int J Ion Mobil Spectrom 11:89–93

    Article  Google Scholar 

  60. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS-data. Int J Ion Mobil Spectrom 11:77–82

    Article  Google Scholar 

  61. Lehtonen H, Oksa P, Lehtimäki L, Sepponen A, Nieminen R, Kankaanranta H, Saarelainen S, Järvenpää R, Uitti J, Moilanen E (2007) Increased alveolar nitric oxide concentration and high levels of leukotriene B4 and 8-isoprostane in exhaled breathcondensate in patients with asbestosis. Thorax 62:602–607. doi:10.1136/thx.2006.067868

    Article  Google Scholar 

  62. Phillips M, Herrer J, Krishnan S, Zain M, Greenberg J, Cataneo RN (1999) Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl 729:75–88

    Article  CAS  Google Scholar 

  63. Libardoni M, Stevens PT, Waite JH, Sacks R (2006) Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GC * GC). J Chromatogr B Anal Technol Biomed Life Sc 842:13–21

    Article  CAS  Google Scholar 

  64. Vautz W, Sielemann S, Baumbach JI (2003) The influence of humidity on the determination of organic trace substances in ambient air using UV ion mobility spectrometry: alpha- and beta-pinene, 3-carene and limonene. Int J Ion Mobil Spectrom 6:21–29

    CAS  Google Scholar 

  65. Liu X, Nacson S, Grigoriev A, Lynds P, Pawliszyn J (2006) A new thermal desorption solid-phase microextraction system for hand-held ion mobility spectrometry. Anal Chim Acta 559:159–165

    Article  CAS  Google Scholar 

  66. Wu J (2009) On-site sample preparation and introduction to ion mobility spectrometry PhD thesis. University of Waterloo

  67. Lai H, Guerra P, Joshi M, Almirall JR (2008) Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry. J Sep Sci 31:402–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of the work on this paper (JIBB) has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (Sonderforschungsbereich) SFB 876 “Providing Information by Resource-Constrained Analysis”, project TB1 “Resource-Constrained Analysis of Spectrometry Data”.

We want to thank to Berufsgenossenschaft Holz und Metall for the recruitment of patients, K.G. Hering and J. Rodenwald for the radiological assessment of the images and C. Kelbel for the pneumology expertise.

Notice: The work presented is part of the thesis of Y. Cakir [1, 3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cakir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakir, Y., Métrailler, L., Baumbach, J.I. et al. Signals in asbestos related diseases in human breath - preliminary results. Int. J. Ion Mobil. Spec. 17, 87–94 (2014). https://doi.org/10.1007/s12127-014-0147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-014-0147-7

Keywords

Navigation