Skip to main content

Advertisement

Log in

Circulating tumor cells in the clinical cancer diagnosis

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. CTCs undergo a series of migration, adhesion and aggregation to form metastases, leading to post-operative recurrence and metastasis in patients with malignant tumors. The detection and analysis of CTCs, as a new non-invasive diagnostic tool, plays an important role in tumor diagnosis, therapeutic efficacy, monitoring recurrence, prognosis assessment and tumor precision medical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTCs:

Circulating tumor cells

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time PCR

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Hogan E, Almira-Suarez I, Li S, Collins SP, Jean WC. Clinical Management of Prostate Cancer Metastasis to the Pineal Gland: case report and review of the literature. World Neurosurg. 2018. https://doi.org/10.1016/j.wneu.2018.11.111.

    Article  PubMed  Google Scholar 

  3. Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018. https://doi.org/10.1002/jbmr.3618.

    Article  CAS  PubMed  Google Scholar 

  4. Tuerxun H, Cui J. The dual effect of morphine on tumor development. Clin Transl Oncol. 2018. https://doi.org/10.1007/s12094-018-1974-5.

    Article  PubMed  Google Scholar 

  5. Yang W, Mu T, Jiang J, Sun Q, Hou X, Sun Y, et al. Identification of potential biomarkers and metabolic profiling of serum in ovarian cancer patients using UPLC/Q-TOF MS. Cell Physiol Biochem. 2018;51(3):1134–48. https://doi.org/10.1159/000495492.

    Article  CAS  PubMed  Google Scholar 

  6. Guan CS, Wang XM, Lv ZB, Yan S, Sun L, Xie RM. MRI findings of AIDS-related giant facial Kaposi's sarcoma: a case report. Medicine (Baltimore). 2018;97(41):e12530. https://doi.org/10.1097/MD.0000000000012530.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shoji S, Hashimoto A, Nakamura T, Hiraiwa S, Sato H, Sato Y, et al. Novel application of three-dimensional shear wave elastography in the detection of clinically significant prostate cancer. Biomed Rep. 2018;8(4):373–7. https://doi.org/10.3892/br.2018.1059.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang W, Zhao Q, Hu A, He X, Zhu X. Application of indocyanine green (ICG) detection in evaluating early prognosis in patients with fatty liver disease after liver transplantation. Ann Transpl. 2017;22:208–14.

    Article  Google Scholar 

  9. Gibson D. Multi-action Pt(IV) anticancer agents; do we understand how they work? J Inorg Biochem. 2018;191:77–84. https://doi.org/10.1016/j.jinorgbio.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  10. Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 2018. https://doi.org/10.1016/j.semcancer.2018.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Ruhen O, Meehan K. Tumour-derived extracellular vesicles as a novel source of protein biomarkers for cancer diagnosis and monitoring. Proteomics. 2018. https://doi.org/10.1002/pmic.201800155.

    Article  Google Scholar 

  12. Neri E, Del Re M, Paiar F, Erba P, Cocuzza P, Regge D, et al. Radiomics and liquid biopsy in oncology: the holons of systems medicine. Insights Imaging. 2018. https://doi.org/ https://doi.org/10.1007/s13244-018-0657-7.

  13. Gwak H, Kim J, Kashefi-Kheyrabadi L, Kwak B, Hyun KA, Jung HI. Progress in circulating tumor cell research using microfluidic devices. Micromachines (Basel). 2018. https://doi.org/10.3390/mi9070353.

    Article  PubMed Central  Google Scholar 

  14. Marrugo-Ramirez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19102877.

    Article  PubMed Central  Google Scholar 

  15. Schlange T, Pantel K. Potential of circulating tumor cells as blood-based biomarkers in cancer liquid biopsy. Pharmacogenomics. 2016;17(3):183–6. https://doi.org/10.2217/pgs.15.163.

    Article  CAS  PubMed  Google Scholar 

  16. Lowe AC. Circulating tumor cells: applications in cytopathology. Surg Pathol Clin. 2018;11(3):679–86. https://doi.org/10.1016/j.path.2018.04.008.

    Article  PubMed  Google Scholar 

  17. Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143(13):2936–70. https://doi.org/10.1039/c7an01979c.

    Article  CAS  PubMed  Google Scholar 

  18. Mansilla C, Soria E, Ramirez N. The identification and isolation of CTCs: a biological Rubik's cube. Crit Rev Oncol Hematol. 2018;126:129–34. https://doi.org/10.1016/j.critrevonc.2018.03.027.

    Article  PubMed  Google Scholar 

  19. Kitz J, Lowes LE, Goodale D, Allan AL. Circulating tumor cell analysis in preclinical mouse models of metastasis. Diagnostics (Basel). 2018. https://doi.org/10.3390/diagnostics8020030.

    Article  PubMed Central  Google Scholar 

  20. Khetrapal P, Lee MWL, Tan WS, Dong L, de Winter P, Feber A, et al. The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;66:56–63. https://doi.org/10.1016/j.ctrv.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  21. Mong J, Tan MH. Size-based enrichment technologies for non-cancerous tumor-derived cells in blood. Trends Biotechnol. 2018;36(5):511–22. https://doi.org/10.1016/j.tibtech.2018.02.010.

    Article  CAS  PubMed  Google Scholar 

  22. Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng. 2018;115(10):2504–29. https://doi.org/10.1002/bit.26787.

    Article  CAS  PubMed  Google Scholar 

  23. Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pelle E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018. https://doi.org/10.1177/1758835918794630.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rana A, Zhang Y, Esfandiari L. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst. 2018;143(13):2971–91. https://doi.org/10.1039/c7an01965c.

    Article  CAS  PubMed  Google Scholar 

  25. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2018. https://doi.org/ https://doi.org/10.1038/s41576-018-0071-5.

  26. Zhang J, Shi H, Jiang T, Liu Z, Lin PP, Chen N. Circulating tumor cells with karyotyping as a novel biomarker for diagnosis and treatment of nasopharyngeal carcinoma. BMC Cancer. 2018;18(1):1133. https://doi.org/10.1186/s12885-018-5034-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi ZH, Xu HX, Zhang SR, Xu JZ, Li S, Gao HL, et al. The significance of liquid biopsy in pancreatic cancer. J Cancer. 2018;9(18):3417–26. https://doi.org/10.7150/jca.24591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samandari M, Julia MG, Rice A, Chronopoulos A, Del Rio Hernandez AE. Liquid biopsies for management of pancreatic cancer. Transl Res. 2018;201:98–127. https://doi.org/10.1016/j.trsl.2018.07.008.

    Article  PubMed  Google Scholar 

  29. Yin J, Wang Z, Li G, Lin F, Shao K, Cao , et al. Characterization of circulating tumor cells in breast cancer patients by spiral microfluidics. Cell Biol Toxicol. 2018. https://doi.org/ https://doi.org/10.1007/s10565-018-09454-4.

  30. Trapp E, Janni W, Schindlbeck C, Juckstock J, Andergassen U, de Gregorio A, et al. Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. J Natl Cancer Inst. 2018. https://doi.org/10.1093/jnci/djy152.

    Article  Google Scholar 

  31. Su YH, Kim AK, Jain S. Liquid biopsies for hepatocellular carcinoma. Transl Res. 2018;201:84–97. https://doi.org/10.1016/j.trsl.2018.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qi LN, Xiang BD, Wu FX, Ye JZ, Zhong JH, Wang YY, et al. Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma. Cancer Res. 2018;78(16):4731–44. https://doi.org/10.1158/0008-5472.CAN-17-2459.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Han X, Yu X, Xu Z, Yang G, Liu B, et al. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. J Exp Clin Cancer Res. 2018;37(1):213. https://doi.org/10.1186/s13046-018-0893-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan Y, Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr Probl Cancer. 2018;42(1):95–106. https://doi.org/10.1016/j.currproblcancer.2017.11.002.

    Article  PubMed  Google Scholar 

  35. Weng WH, Ho IL, Pang CC, Pang SN, Pan TM, Leung WH. Real-time circulating tumor cells detection via highly sensitive needle-like cytosensor-demonstrated by a blood flow simulation. Biosens Bioelectron. 2018;116:51–9. https://doi.org/10.1016/j.bios.2018.05.035.

    Article  CAS  PubMed  Google Scholar 

  36. Lim M, Kim CJ, Sunkara V, Kim MH, Cho YK. Liquid biopsy in lung cancer: clinical applications of circulating biomarkers (CTCs and ctDNA). Micromachines (Basel). 2018. https://doi.org/10.3390/mi9030100.

    Article  PubMed Central  Google Scholar 

  37. Messaritakis I, Nikolaou M, Politaki E, Koinis F, Lagoudaki E, Koutsopoulos A, et al. Bcl-2 expression in circulating tumor cells (CTCs) of patients with small cell lung cancer (SCLC) receiving front-line treatment. Lung Cancer. 2018;124:270–8. https://doi.org/10.1016/j.lungcan.2018.08.021.

    Article  PubMed  Google Scholar 

  38. Han D, Chen K, Che J, Hang J, Li H. Detection of epithelial-mesenchymal transition status of circulating tumor cells in patients with esophageal squamous carcinoma. Biomed Res Int. 2018;2018:7610154. https://doi.org/10.1155/2018/7610154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DiPardo BJ, Winograd P, Court CM, Tomlinson JS. Pancreatic cancer circulating tumor cells: applications for personalized oncology. Expert Rev Mol Diagn. 2018;18(9):809–20. https://doi.org/10.1080/14737159.2018.1511429.

    Article  CAS  PubMed  Google Scholar 

  40. Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, et al. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget. 2018;9(42):26900–33. https://doi.org/10.18632/oncotarget.24809.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brown JC, Rhim AD, Manning SL, Brennan L, Mansour AI, Rustgi AK, et al. Effects of exercise on circulating tumor cells among patients with resected stage I–III colon cancer. PLoS ONE. 2018;13(10):e0204875. https://doi.org/10.1371/journal.pone.0204875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santasusagna S, Moreno I, Navarro A, Castellano JJ, Martinez F, Hernandez R, et al. Proteomic analysis of liquid biopsy from tumor-draining vein indicates that high expression of exosomal ECM1 is associated with relapse in stage I–III colon cancer. Transl Oncol. 2018;11(3):715–21. https://doi.org/10.1016/j.tranon.2018.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu J, Han B. Liquid biopsy promotes non-small cell lung cancer precision therapy. Technol Cancer Res Treat. 2018;17:1533033818801809. https://doi.org/10.1177/1533033818801809.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O'Byrne K, et al. The prognostic role of circulating tumor cells (CTCs) in lung cancer. Front Oncol. 2018;8:311. https://doi.org/10.3389/fonc.2018.00311.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nam SJ, Yeo HY, Chang HJ, Kim BH, Hong EK, Park JW. A new cell block method for multiple immunohistochemical analysis of circulating tumor cells in patients with liver cancer. Cancer Res Treat. 2016;48(4):1229–422. https://doi.org/10.4143/crt.2015.500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Labgaa I, Villanueva A. Liquid biopsy in liver cancer. Discov Med. 2015;19(105):263–73.

    PubMed  Google Scholar 

  47. Wen YF, Cheng TT, Chen XL, Huang WJ, Peng HH, Zhou TC, et al. Elevated circulating tumor cells and squamous cell carcinoma antigen levels predict poor survival for patients with locally advanced cervical cancer treated with radiotherapy. PLoS ONE. 2018;13(10):e0204334. https://doi.org/10.1371/journal.pone.0204334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szczepanik A, Sierzega M, Drabik G, Pituch-Noworolska A, Kolodziejczyk P, Zembala M. CD44(+) cytokeratin-positive tumor cells in blood and bone marrow are associated with poor prognosis of patients with gastric cancer. Gastric Cancer. 2018. https://doi.org/10.1007/s10120-018-0858-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kang HM, Kim GH, Jeon HK, Kim DH, Jeon TY, Park DY, et al. Circulating tumor cells detected by lab-on-a-disc: Role in early diagnosis of gastric cancer. PLoS ONE. 2017;12(6):e0180251. https://doi.org/10.1371/journal.pone.0180251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li TT, Liu H, Li FP, Hu YF, Mou TY, Lin T, et al. Evaluation of epithelial-mesenchymal transitioned circulating tumor cells in patients with resectable gastric cancer: relevance to therapy response. World J Gastroenterol. 2015;21(47):13259–67. https://doi.org/10.3748/wjg.v21.i47.13259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31601156 to T.F), Jiangsu Science and Technology Association Young Science and Technology Talents Enrollment Project (toT.F), Changzhou Sci &Tech Program (CJ20180062 to T.F), the Project of Jiangsu Provincial Medical Youth Talent (QNRC2016267 to T.F), Changzhou Applied Basic Research Guiding Project (2017309 to P.Z) and Jiangsu Province “333 Tale nt Project” (BRA2018170 to P.Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Feng.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhou, H., Lu, K. et al. Circulating tumor cells in the clinical cancer diagnosis. Clin Transl Oncol 22, 279–282 (2020). https://doi.org/10.1007/s12094-019-02139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02139-2

Keywords

Navigation