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Abstract Integrity of the extracellular matrix (ECM) is
essential for maintaining the normal structure and function
of connective tissues. ECM is secreted locally by cells and
organized into a complex meshwork providing physical
support to cells, tissues, and organs. Initially thought to act
only as a scaffold, the ECM is now known to provide a
myriad of signals to cells regulating all aspects of their
phenotype from morphology to differentiation. Matricellu-
lar proteins are a class of ECM related molecules defined
through their ability to modulate cell–matrix interactions.
Matricellular proteins are expressed at high levels during
development, but typically only appear in postnatal tissue
in wound repair or disease, where their levels increase
substantially. Members of the CCN family, tenascin-C,
osteopontin, secreted protein acidic rich in cysteine (SPARC),
bone sialoprotein, thrombospondins, and galectins have all
been classed as matricellular proteins. Periostin, a 90 kDa
secreted homophilic cell adhesion protein, was recently added
to matricellular class of proteins based on its expression
pattern and function during development as well as in wound
repair. Periostin is expressed in connective tissues including
the periodontal ligament, tendons, skin and bone, and is also
prominent in neoplastic tissues, cardiovascular disease, as
well as in connective tissue wound repair. This review will
focus on the functional role of periostin in tissue physiology.
Fundamentally, it appears that periostin influences cell
behaviour as well as collagen fibrillogenesis, and therefore

exerts control over the structural and functional properties of
connective tissues in both health and disease. Periostin is a
novel matricellular protein with close homology to
Drosophila fasciclin 1. In this review, the functional role of
periostin is discussed in the context of connective tissue
physiology, in development, disease, and wound repair.
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Abbreviations
ECM Extracellular matrix
CCN2 connective tissue growth factor
FA focal adhesion
HGF human gingival fibroblast
OSF-2 osteoblast specific factor-2
RCO rat calvarial osteoblast
SPARC secreted protein acidic rich in cysteine
TSP thrombospondin

Introduction

The extracellular matrix (ECM) is a key regulator of cell
behaviour, providing molecular signals to resident cell
populations that are essential for maintenance of normal
connective tissue structure and function (Berrier and
Yamada 2007; Culav et al. 1999; Lukashev and Werb
1998; Stamenkovic 2003). ECM is composed of many
different proteins, including the structural proteins fibro-
nectin, collagens, laminins, vitronectin, as well as special-
ized proteins such as proteoglycans, glycoproteins, growth
factors, and matrix metalloproteinases (Stamenkovic
2003; Tayebjee et al. 2003). It is the amount, type, and
composition of the ECM that give connective tissues their
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unique properties (Culav et al. 1999; Lukashev and Werb
1998). The ECM is a dynamic structure, continually
remodeling in response to mechanical stimuli, integrin
signaling, and pathology (Berk et al. 2007; Gallagher et al.
2007; Hinz and Gabbiani 2003; Larsen et al. 2006). As
molecular techniques have advanced, it has been possible to
learn more about ECM remodeling and the functions of
each protein subclasses. In particular genetic knockout mice
have proven an excellent model for investigating ECM
molecules (Muller 1999). Such models have highlighted
that during development and wound repair, synthesis of
matrix components can be highly transient, providing
organizational cues to specific cell populations in a tightly
controlled, time dependent manner. Adhesion of cells to
ECM through integrin receptors regulates their shape,
proliferation, intracellular signaling and differentiation, thus
maintaining normal tissue function (Humphries et al. 2004;
Lock et al. 2008; Zelenka 2004).

During wound repair and certain pathologies, changes
occur in the composition of the ECM, providing signals to
the cells that mediate repair or if misregulated, can result in
development of various pathologies (Berk et al. 2007;
Darby and Hewitson 2007; Grzesik and Narayanan 2002;
Midwood et al. 2004; Raines 2000). In 2000, Paul
Bornstein proposed that there was a family of secreted
ECM proteins that could be linked through their common
functionality. They termed these proteins “matricellular”
proteins to highlight their influence on cell–matrix inter-
actions. Matricellular proteins are important during devel-
opment, but are typically restricted to tissue remodeling and
wound repair in the normal adult. Matricellular proteins
interact with cell surface receptors such as integrins and are
able to bind growth factors as well as to the structural
components of the matrix such as collagen(Baril et al.
2007; Butcher et al. 2007; Gillan et al. 2002; Shimazaki et
al. 2008). Based on this definition, several proteins have
now been identified as matricellular proteins (Bornstein
2000), including connective tissue growth factors (Leask
and Abraham 2006), thrombospondins (Bornstein et al.
2000; Chen et al. 2000), and galectins (Elola et al. 2007; He
and Baum 2006). A comprehensive list of known matricel-
lular proteins is shown in Table 1 and functions of
matricellular proteins in Table 2. However, in this review,

the focus will be on periostin, a relatively recent addition to
the matricellular protein family, despite being first identi-
fied 15 years ago as osteoblast specific factor-2 (OSF-2;
Takeshita et al. 1993).

Periostin: a novel matricellular protein

Periostin was originally identified as an 811-amino acid
protein secreted by murine osteoblasts, which had structural
homology to the insect axonal guidance protein fasciclin-1
(Takeshita et al. 1993). Originally termed osteoblast
specific factor-2 (OSF-2), it was renamed periostin due
localized expression in the periosteum and the periodontal
ligament (Kruzynska-Frejtag et al. 2004). In humans, the
periostin gene is located on chromosome 13, at map
position 13q13.3, and the protein is 835 amino acids in
size. Periostin is a disulfide linked 90-kDa heparin-binding
N terminus-glycosylated protein, containing four tandem
fasciclin (Fas1) domains (Kudo et al. 2007; Litvin et al.
2004). Norris and colleagues, in 2008, were the first to
propose that periostin should be classed as a matricellular
protein, based on its apparent biological functions in the
developing murine cardiac system (Norris et al. 2008a).

Due to an explosion of papers in the last 2 years,
expression of periostin has now been confirmed in many
other tissues and pathologies. Thus far, periostin has been
found in bone (Horiuchi et al. 1999; Litvin et al. 2004;
Nakazawa et al. 2004; Oshima et al. 2002), skin (Norris et
al. 2007; Roy et al. 2007; Tilman et al. 2007), periodontal
ligament (Horiuchi et al. 1999; Kii and Kudo 2007;
Kruzynska-Frejtag et al. 2004; Lallier and Spencer 2007;
Suzuki et al. 2004), muscle injury (Goetsch et al. 2003;
Kudo et al. 2004), vascular injury(Lindner et al. 2005),
myocardial infarction (Dorn 2007; Iekushi et al. 2007; Oka
et al. 2007; Shimazaki et al. 2008), epithelial ovarian cancer
(Gillan et al. 2002), colorectal cancer (Tai et al. 2005), and
pulmonary vascular remodeling (Li et al. 2004; Woodruff et
al. 2007). Furthermore, periostin expression is known to be
prominent in fibrotic conditions, including sub-epithelial
fibrosis in bronchial asthma (Takayama et al. 2006), as well
as in bone marrow fibrosis (Oku et al. 2008). Many of the

Table 1 List of known matricellular proteins

Matricellular proteins

Bone sialoprotein Periostin
CCN2 SPARC (Osteonectin)
Cyr61 Tenascin-C
Galectin 1, 2, 3, 4, 8, and 9 Thrombospondin-1 and 2
Nov WISP-1, 2 and 3
Osteopontin

Table 2 Functions of matricellular proteins

Known effects of matricellular
proteins cell physiology

Cell adhesion Cell de-adhesion
ECM synthesis Collagen fibrillogenesis
Proliferation Apoptosis
Differentiation De-differentiation
Migration Growth factor production
Morphology Biomineralization
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initial research performed on periostin was descriptive in
nature, confirming periostin expression in different tissues
and pathologies. However, with the derivation of the
periostin knockout mouse model (Kii et al. 2006; Rios et
al. 2005), the functions of periostin in development, wound
repair, and disease, are beginning to be revealed.

Phenotype of the periostin knockout mouse

The first description of the periostin knockout mouse was
by Rios and colleagues in 2005 (Rios et al. 2005). The
phenotype of the periostin knockout mouse is of great
interest due to the number of tissues affected. As with other
matricellular proteins, periostin deficiency does not result in
embryonic lethality, although approximately 14% of the
pups die postnatally prior to weaning. Periostin expression
is most common in collagen rich connective tissues.
Deletion of periostin results in severe growth retardation,
suggesting periostin is essential for postnatal development.
Histological analysis of the periostin knockout mice
demonstrated a lack of trabecular bone, severe incisor
enamel defects, periodontal disease, cartilage and cardiac
valve defects. However, when the mice are placed on a soft
diet, growth retardation is attenuated suggesting that this
maybe due to eating difficulties as a result of the lesions in
the periodontium (Rios et al. 2005).

Aside from the CCN2 knockout (Kuiper et al. 2007),
mice that lack matricellular proteins tend to have mild
phenotypes that become more severe under injury or
disease conditions (Bornstein and Sage 2002). Deletion of
matricellular proteins such as TSP-1 and -2, SPARC,
galectins, or tenascin-C affect many tissue types, but more
commonly these mice exhibit an altered response to tissue
injury (Bornstein et al. 2000, 2004; Elola et al. 2007;
Gruber et al. 2005; Park et al. 2004; Yan and Sage 1999;
Yang et al. 2000). However, the loss of periostin appears to
be more severe, with significant damage occurring in
connective tissues during postnatal development. Interest-
ingly, all matricellular proteins are known to play a major
role in normal wound repair, but the role of periostin is not
as clear.

Wound repair

Wound repair is a serious of overlapping events that begin
immediately after wounding (platelet aggregation) until
matrix contraction results in tissue closure (Midwood et al.
2004). While fibrin, collagen, and fibronectin provide
structural support to the matrix during wound repair,
matricellular proteins act by providing specific signals to
the constituent cell populations, modulating their phenotype

(Alford and Hankenson 2006; Kyriakides and Bornstein
2003). Each protein is expressed at different stages of
wound repair and some patterns are more transient than
others. However, to date, the expression profile of periostin
in the wound repair process has yet to be elucidated. Thus
far, expression of periostin in tissue repair has been
investigated predominantly within the vascular and cardiac
systems (Dorn 2007; Kuhn et al. 2007; Lindner et al. 2005;
Litvin et al. 2007; Norris et al. 2008a; Shimazaki et al.
2008), and to a lesser extent in chronic dermal wounds
(Roy et al. 2007), muscle (Goetsch et al. 2003), and bone
fracture (Nakazawa et al. 2004). Interestingly, the regulato-
ry processes, including matricellular protein expression,
responsible for normal development of bone, cartilage and
cardiac tissue also play a major role in their pathogenesis in
adults.

Periostin was initially identified in periosteum and bone
(Horiuchi et al. 1999; Takeshita et al. 1993), and in bone
fracture, periostin mRNA is upregulated twofold and
localizes to preosteoblastic cells within the periosteum, as
well as in undifferentiated mesenchymal cells close to the
fracture site (Nakazawa et al. 2004). The periostin mRNA
signal peaks at day 7, and is significantly reduced by
day 14, where the undifferentiated mesenchymal cells no
longer express periostin mRNA. It seems likely that
periostin plays a role in recruitment of pre-osteoblast
cells into the provisional callus during fracture healing
(Kojima et al. 2007; Nakazawa et al. 2004). However, the
importance of periostin for mesenchymal cell physiology is
not limited to only bone and periosteum.

In periostin knockout mice, large numbers of undiffer-
entiated mesenchymal cells remain in the heart tissue after
development (Butcher et al. 2007; Norris et al. 2008b),
suggesting that periostin maybe required in the differenti-
ation of mesenchymal progenitors to cardiomyocytes.
Periostin has been observed to increase the number of
cardiomyocytes actively replicating DNA in rats after
myocardial infarction (Kuhn et al. 2007). In particular,
periostin is expressed by cardiac fibroblasts where it
interacts with integrins on cells likely modulating their
behaviour during the remodeling process following infarct
(Shimazaki et al. 2008). However, it is still not clear if
periostin acts on cardiomyocytes directly, or support cells
only such as the cardiac fibroblasts (Dorn 2007).

In vascular remodeling, which can be induced through
balloon injury, periostin mRNA levels strongly increase
(Lindner et al. 2005). Periostin expression after injury was
localized to smooth muscle cells of the neointima and the
adventitia. This is similar to the expression pattern of other
matricellular proteins including tenascin-C after balloon
injury (Majesky 1994; Wallner et al. 2002), suggesting that
periostin may perform similar functions in such situations.
Significantly, over expression of periostin enhances smooth
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muscle cell migration in vitro (Li et al. 2006), and may
have a de-adhesive activity similar to tenascin-C and other
matricellular proteins (Murphy-Ullrich 2001). While matri-
cellular proteins appear important in arterial remodeling, in
vein grafts molecules such as tenascin-C appear to
contribute to intimal hyperplasia and ultimate graft failure
(Wallner et al. 1999). It will be of great interest to assess if
periostin is also expressed in vein grafts during remodeling
in the arterial system.

From the information highlighted above, it appears that
periostin, like other matricellular proteins, can be considered
to play a fundamental role in tissue remodeling. Periostin is
known to interact with integrins, influencing cell–matrix
interactions, adhesion, proliferation and differentiation pro-
cesses (Kudo et al. 2007). The focus in our laboratory is on
wound healing in the periodontium, particularly in the
presence of biomaterials (Hamilton and Brunette 2007;
Hamilton et al. 2006, 2007; Schuler et al. 2006). We have
recently shown secretion of periostin in to the ECM by
human gingival fibroblasts cultured on titanium in vitro, but
only in the presence of ascorbic acid (Fig. 1). This is
suggestive that periostin may closely associate with collagen
synthesis on titanium. Indeed, it appears that periostin is
essential for certain parts of the collagen assembly process.

Periostin–ECM interactions: influence on collagen
fibrillogenesis

Collagen fibrils are the ECM component allowing connec-
tive tissues to withstand tensile forces, and tissues such as

ligaments, tendons, bone, cartilage, and skin contain large
numbers of collagen fibrils thus allowing dispersal of such
forces (Canty and Kadler 2005; Culav et al. 1999).
Collagen fibrillogenesis is a complex multi-step process
that is still poorly understood (Canty and Kadler 2005).
Although it was initially thought that secreted collagen
might self assemble, evidence is now quickly accumulating
that other ECM proteins are required. Matricellular proteins
in particular appear to be of importance in collagen assembly
(Bornstein et al. 2000, 2004; ; Yang et al. 2000). For
example, deletion of the thrombospondin-2 gene has shown
to disrupt collagen fibrillogenesis (Bornstein et al. 2000),
and in SPARC null mice, collagen fibrils are significantly
smaller (Martinek et al. 2007).

Expression of periostin is common in collagen rich tissues,
suggesting that it may influence collagen fibrillogenesis (Borg
and Markwald 2007). Interestingly, periostin protein is
routinely present in adult animals in tissues such as the
periodontal ligament (Horiuchi et al. 1999; Tomokiyo et al.
2008; Wilde et al. 2003), unlike many of the other
matricellular proteins, further suggesting that it plays a key
role in adult tissues. Norris et al. 2007, investigated the role
of periostin in collagen I fibrillogenesis in murine connective
tissues including periodontal ligament, tendon, skin and
atrioventricular valves. Using co-immunoprecipitation tech-
niques, they identified that periostin directly binds to
collagen type I, and in periostin knockout mice, collagen
fiber diameter and cross-linking are significantly reduced.
Furthermore, biomechanical testing of skin samples from
knockout and wild type mice highlighted a reduced modulus
of elasticity and lower ultimate stress in samples from

Fig. 1 Extracellular localization of periostin protein in ECM secreted by human gingival fibroblasts cultured on titanium
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periostin knockouts. They concluded that periostin appeared
to influence maturation and assembly of collagen I fibrils.
This hypothesis is backed further from the observations that
periostin null mice also appear to be unable to support
normal valvular remodeling or maturation of the cardiac
skeleton (Butcher et al. 2007; Norris et al. 2008b; Snider et
al. 2008). The hypothesis that periostin plays an important
role in collagen fibrillogenesis has significant implications
for connective tissue disease, where defects in collagen and
elastin production result in chronic fibrotic conditions
(Abraham et al. 1982; Leask et al. 2004; Uitto 1979; Uitto
and Lichtenstein 1976).

Connective tissue disease and periostin expression:
insights from the periostin−/− mouse phenotype

Connective tissue diseases are disorders featuring abnor-
malities commonly involving the ECM proteins collagen
and elastin. Several chronic connective tissue diseases have
been identified, including Marfan’s syndrome (fibrillin
defect), scleroderma (collagen over-production), Ehlers–
Danlos (defect in collagen synthesis), and pseudoxanthoma
elasticum (elastin defect). Matricellular proteins have
already been implicated in such disease conditions; CCN2

in scleroderma (Leask et al. 2004), and thrombospondin-2
in rheumatoid arthritis (Park et al. 2004).

As more is learned about connective tissue diseases,
insights are gained into the possible involvement of
periostin (Erkan et al. 2007; Oku et al. 2008; Takayama et
al. 2006). In this review, we will specifically deal with
Marfan’s syndrome (Callewaert et al. 2008). Although the
condition has been genetically linked to defects in fibrillin
(Nasuti et al. 2004), the exact mechanisms underlying the
condition are still not well understood (Boileau et al. 2005;
Collod-Beroud and Boileau 2002; Robinson and Booms
2001; Whiteman et al. 2006). In vitro studies have shown
that type I collagen secreted by cells isolated from Marfan’s
patients is more soluble (Francis et al. 1976; Priest et al.
1973). This is indicative of lower levels of collagen cross-
linking, which has already been identified in periostin
knockout mice (Norris et al. 2007). This is backed by other
research that suggest that the Marfan’s phenotype may be
due to the expression of a variety of primary structure
alterations in the chains of type I collagen that interfere
with normal crosslink formation (Byers et al. 1981). In our
laboratory, we have recently performed analysis of periostin
knockout mice skulls, confirming the observations by Norris
et al, of severe periodontal disease, significant reduction in
bone density, and incisor defects (Figs. 2 and 3). Our

Fig. 2 Six-week old periostin
knockout C57BL/6 and litter
matched wild types were
analyzed using microCT
imaging. In wild type mice, the
molars are well arranged, with
healthy periodontal ligament
evident in the sagittal view.
Periostin knockout mice have
significant defects around the
bone and periodontal ligaments,
particularly in the back molars
(arrow, sagittal view). In the
coronal view, bone loss is
evident in the jaw (arrows)
when periostin knockout mice
are compared with wild type
litter matched controls
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analysis has also described for the first time that bones are
missing in the orbit of the mice, or fail to properly fuse
(Fig. 4). In Marfan’s patients, craniofacial abnormalities are
common (De Coster et al. 2004; Pirinen 1998; Westling et
al. 1998), and we hypothesize that the periostin knockout
mouse has a Marfan’s like phenotype. Whether periostin
impacts on collagen synthesis and assembly directly or
through fibrillin is not yet known, but the prospect is
intriguing. Furthermore, as Marfan’s syndrome, periostin
deficient mice have severe defects in their heart’s valves,
especially the mitral valve (Rios et al. 2005). The valve
leaflets become extremely floppy and do not close tightly,
allowing blood to leak backwards across the valve, back
into the ventricles. This provides further evidence that the
periostin knockout mouse suffers from a Marfan’s-like
phenotype. Further analysis of the periostin knockouts
could provide important information for human connective
tissue diseases, particularly those where collagen synthesis
and assembly is defective.

Conclusions

Periostin is a novel secreted protein with very diverse
functions that appear necessary for postnatal development.
The expression of periostin is most common in collagen
rich connective tissues, where it appears essential for proper
ECM synthesis, particularly with respect to collagen I
fibrillogenesis. Mice deficient in periostin show a pheno-
type similar to Marfan’s syndrome, suggesting that peri-
ostin may be involved in this pathology, in addition to
fibrillin-1.
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Fig. 3 Analysis of the bone volume and mineral content reveals that
the loss of periostin influences formation of bone, which is consistent
with the findings of Rios et al. 2005

Fig. 4 MicroCT analysis of wild type C57BL/6 and periostin
knockout C57BL/6 mice at a scanning distance of 40 μm. Overall
skull shape differed between the mice types, and the orbital bones
appear to be missing entirely in the periostin knockout (see arrows)
which is a characteristic of Marfan’s syndrome
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