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Abstract

Introduction—Decades of research have suggested that nutritional intake contributes to the 

development of human disease, mainly by influencing the development of obesity and obesity-

related conditions. A relatively large body of research indicates that functional variation in human 

taste perception can influence nutritional intake as well as body mass accumulation. However, 

there are a considerable number of studies that suggest that no link between these variables 

actually exists. These discrepancies in the literature likely result from the confounding influence 

of a variety of other, uncontrolled, factors that can influence ingestive behavior.

Strategy—In this review, the use of controlled animal experimentation to alleviate at least some 

of these issues related to the lack of control of experimental variables is discussed. Specific 

examples of the use of some of these techniques are examined.

Discussion and conclusions—The review will close with some specific suggestions aimed at 

strengthening the link between gustatory neural input and its putative influence on ingestive 

behaviors and the maintenance of body weight.
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Introduction

Between 2011 and 2012, it was estimated that 35 % of adults in the USA were considered 

obese (i.e., their body mass index (BMI) was 30 or over) (Ogden et al. 2014). Obesity 

prevalence has remained high since 2003, despite it being the focus of many public health 

efforts (Ogden et al. 2014). The cost of obesity has been staggering as well. In 2008, it was 

estimated that healthcare costs associated with obesity totaled $147 billion (Finkelstein et al. 
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2009). On average, in this year, medical costs for obese individuals were $1429 more than 

individuals of normal weight (Finkelstein et al. 2009). The high prevalence and cost of 

obesity demonstrates a great need for an effective treatment method.

Decades of research have suggested that nutritional intake contributes to the development of 

human disease mainly by influencing the development of obesity and obesity-related 

conditions (e.g., cardiovascular disease, hypertension, type 2 diabetes mellitus) (e.g., Appel 

et al. 1997; Brinkworth et al. 2009; Dauchet et al. 2007; Ding and Mozaffarian 2006; Herder 

et al. 2009; Hu et al. 2001; Kris-Etherton et al. 2002; Lindström et al. 2006; McCarron and 

Reusser 2001; Rouse et al. 1983; Swain et al. 2008). Collectively, these studies suggest that 

a majority of obesity-related diseases could be prevented by the adoption of healthier eating 

habits.

To lose weight, it is necessary to decrease daily caloric intake to a level at or below daily 

energy expenditure. Innumerable weight-loss programs that instruct participants to 

manipulate dietary intake in an assortment of ways have been tested and implemented with 

varying degrees of efficacy (Du and Feskens 2010; Hirsch et al. 1998). As with a variety of 

other chronic diseases, the use of prescription medications or other medical interventions 

may be warranted for some individuals who are obese (Li and Cheung 2009; Oh et al. 2009). 

However, any weight loss achieved within weight loss programs or with the use of drug 

interventions has been shown to be very difficult to sustain for the long term, likely due to 

compensatory changes in physiological processes, which seem to stimulate weight re-gain 

(Hirsch et al. 1998; Mathus-Vliegen and de Groot 2013).

The primary action of medications currently being used or developed as treatments for 

obesity are related to one of the following: modulating hypothalamic food intake regulation, 

blocking nutrient absorption, modulating fat storage, or increasing thermogenesis (Cooke 

and Bloom 2006; Hofbauer et al. 2007; Oh et al. 2009). One of the many other factors that 

influences food intake that has not been targeted by pharmaceutical producers is sensory 

information/sensory processing. A large amount of sensory information (e.g., chemosensory, 

thermosensory, mechanosensory) from both the oral-nasal cavity and gastrointestinal tract is 

sent to the CNS, imparting information related to macronutrient composition, caloric 

density, osmolarity, and potential toxicity of food (Ahima and Antwi 2008; Morrison and 

Berthoud 2007; Saper et al. 2002; Zheng et al. 2009). However, it is the sense of taste which 

acts to protect the rest of the alimentary canal by providing information on which nutrients 

to ingest and which to reject (Mattes 2003; Scott and Verhagen 2000; Tanaka et al. 2007).

Despite a relatively large body of research that indicates functional variation in taste 

perception can influence nutritional intake, research demonstrating a definitive role for the 

gustatory system in the maintenance of food intake and body mass has been sparse. Below, 

we will review some of the evidence from the human literature that suggest that functional 

variation in taste perception can influence nutritional intake. We then detail some of the 

interpretive issues endemic in studies from this literature. We point out where the use of 

specific behavioral protocols and animal models could potentially help to provide a stronger, 

more definitive link between taste, ingestive behavior, and body mass accumulation. 

However, we will first provide a brief primer on the organization of the taste system, with a 
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focus on the peripheral gustatory system. This emphasis is taken because variation in 

mammalian taste perception has almost exclusively been associated with functional 

variation in key components of the peripheral gustatory system.

The Peripheral Gustatory System

The gustatory system acts as a sentinel allowing for the recognition of external chemical 

stimuli entering the alimentary canal. Together with receptors of the olfactory and 

somatosensory systems, gustatory receptors recognize distinct characteristics of many 

chemicals that comprise ingested foods. These perceptions either promote the ingestion or 

rejection of the food (Kinnamon and Cummings 1992; Small 2012; Small and Prescott 

2005).

To date, there are five well-characterized taste qualities, each of which is associated with a 

biologically relevant class of compounds: sweet taste is associated with the presence of 

simple carbohydrates such as glucose and sucrose in the oral cavity, salty taste is elicited by 

electrolytes such as sodium, umami taste is associated with the presence of L-amino acids in 

the oral cavity, bitter taste is elicited by the presence of potentially toxic compounds such as 

some alkaloids found in plants, and sour taste is associated with the presence of acids in the 

oral cavity (Bartoshuk 1988; Gravina et al. 2013; Lindemann 2001; Yarmolinsky et al. 

2009). Additionally, there is emerging evidence that lipids (i.e., non-esterified fatty acids) 

can be detected by fatty acid receptors on taste receptor cells, leading to the recognition of a 

putative sixth taste known as “fat taste” (Cartoni et al. 2010; Degrace-Passilly and Besnard 

2012; DiPatrizio 2014; Laugerette et al. 2005; Matsumura et al. 2007; Simons et al. 2011).

When present in the oral cavity, these biologically relevant chemical stimuli activate 

receptors located on specialized anatomical cells located in structures known as taste buds. 

The peripheral gustatory sensory organ, the taste bud, houses a heterogeneous population of 

taste receptor cells in a rosette-like structure (Chaudhari and Roper 2010; Lindemann 2001). 

In mammals, the majority of taste buds are located on the dorsal surface of the tongue. 

Approximately 10–15 % of taste buds appear in the soft palate (Lundy and Norgren 2004; 

Spector and Glendinning 2009). A small number of non-lingual taste buds can also be found 

in the larynx, nasopharynx, and epiglottis. Taste buds on the tongue are located in nipple-

like projections referred to as papillae. There are three types of taste bud containing papillae 

on the tongue (Chaudhari and Roper 2010; Lindemann 1996; Lindemann 2001; Tucker and 

Smith 1969). The fungiform papillae are dispersed throughout the anterior dorsal surface of 

the tongue, harboring a small number of taste buds at the apex of the papillae. The foliate 

papillae are composed of several deep trenches located posteriorly, on lateral portions of the 

tongue. Finally, posterior to the intermolar eminence and in between the foliate trenches lies 

the circumvallate papilla, containing the densest region of taste buds in the oral cavity 

(Lindemann 2001; Montmayeur and Le Coutre 2010).

Taste buds are composed of 50–150 taste receptor cells (Chaudhari and Roper 2010; Delay 

et al. 1986; Lindemann 2001). These taste cells are categorized into four cell types: type I 

cells are electron dense, containing dark cytoplasms and indented nuclei. These taste cells 

are thought to play a “glial-like role” by supporting the structural integrity of the taste bud 

Ciullo and Dotson Page 3

Chemosens Percept. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the cells that surround it (Delay et al. 1986; Finger 2005; Murray 1973). They also have 

the potential to regulate the extracellular environment within the taste bud (Gravina et al. 

2013; Suzuki 2007). While type I cells have not traditionally been recognized for the 

transduction of taste stimuli, recent reports suggest that amiloride-sensitive Na+ channels are 

located on type I cells, strongly suggesting their involvement in sodium transduction and 

subsequent salty taste perception (Chandrashekar et al. 2010; Vandenbeuch et al. 2008; 

Yoshida et al. 2009). Type II taste cells have a translucent cytoplasm and contain a large 

round nucleus (Delay et al. 1986; Finger 2005; Murray 1973). These cells express G 

protein–coupled receptors (GPCRs) and other receptors responsible for recognizing taste 

stimuli that give rise to sweet, bitter, umami, and fat taste percepts (Adler et al. 2000; 

Bigiani 2001; Galindo et al. 2012; Hoon et al. 1999; Kitagawa et al. 2001; Laugerette et al. 

2005; Li et al. 2002; Matsumura et al. 2007; Nelson et al. 2002). These cells do not make 

classical synaptic connections with gustatory afferents. They do, however, transmit 

information to gustatory neurons via chemical communication using pore-forming 

membrane proteins such as calcium homeostasis modulator 1 (Taruno et al. 2013). Type III 

taste cells have round nuclei-like type II cells but have dark cytoplasm similar to that of type 

I cells (Delay et al. 1986; Finger 2005; Murray 1973). This cell type makes traditional 

synaptic connections with gustatory nerve fibers and expresses various synaptic molecules 

as well as neurotransmitters (Gravina et al. 2013; Roper 2013; Suzuki 2007) and have been 

implicated in the transduction of protons and in the subsequent mediation of sour taste 

perception (Huang et al. 2006a; Huang et al. 2008). Finally, type IV cells are located on the 

basolateral part of taste buds and are composed of progenitor cells. These cells contain sonic 

hedgehog genes, which allow for the differentiation and maturation into other taste cell 

types (e.g., Mbiene and Roberts 2003; Miura et al. 2014).

Taste Receptors

There are many families of receptors expressed in taste receptor cells that are responsible for 

recognizing stimuli that correspond to each taste quality. These receptors are expressed on 

microvilli at the apical surface of taste receptor cells (Lindemann 2001). Sweet, bitter, and 

umami tastes are mediated by GPCRs (Hoon et al. 1999; Kitagawa et al. 2001; Li et al. 

2002; Nelson et al. 2002). Receptors of the T1R family are responsible for recognizing 

stimuli that give rise to sweet and umami taste percepts. There are three members of the 

receptor family: T1R1, T1R2, and T1R3. Specifically, T1R3 dimerizes with T1R2 to form a 

heterometric receptor that mediates our perception of sweet taste (Nelson et al. 2001). T1R1 

combines with T1R3 to form a receptor that is sensitive to free L-amino acids and mediates 

our perception of umami taste (Li et al. 2002; Nelson et al. 2002). The T2R family of 

receptors interacts with various ligands that give rise to a bitter taste percept (Behrens and 

Meyerhof 2006; Chandrashekar et al. 2000).

Salt taste appears to be primarily regulated by the apical ENaC ion channel that allows the 

direct passage of Na+ into the cell (Chandrashekar et al. 2010). Sour (acids) detection is not 

well characterized, but possible mechanisms such as the diffusion of H+ ions directly into 

the cell and/or H+ detection by PKD1-like family receptors are currently being studied 

(Huang et al. 2006b; Kataoka et al. 2008; Kinnamon and Cummings 1992). Finally, as 

evidence about a sixth taste continues to emerge, non-esterified fatty acids have now been 
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shown to interact with various receptors that are expressed in taste cells and are known to be 

involved in the transduction of these stimuli (Cartoni et al. 2010; Galindo et al. 2012; 

Gilbertson et al. 1998; Laugerette et al. 2005; Matsumura et al. 2009; Matsumura et al. 

2007).

Neurotransmitters and Neuromodulators

The cells in taste buds use both classical and non-classical small molecule transmitters to 

activate intragemmal nerve fibers, and perhaps to impact upon the functioning of other cells 

within the bud. Ongoing research in the field aims to shed light on how taste cells 

communicate with each other and with sensory nerves to discriminate various signals and 

relay specific information to the brain for conscious recognition of the ingested contents. 

ATP appears to be the principal neurotransmitter used by taste receptor cells to signal to 

intragemmal nerves fibers (Finger et al. 2005). However, other transmitters (e.g., 

acetylcholine, serotonin, norepinephrine, gamma-aminobutyric acid) likely play important 

roles in modulating taste cell functions through autocrine and paracrine signaling and thus 

may help to shape the output of the taste bud (see Roper 2013 for a comprehensive review).

Peptide Regulators of Peripheral Taste Function

Evidence suggests significant taste information processing occurs within the taste bud and 

between afferent cranial nerves targeting the central nervous system (CNS) (Chaudhari and 

Roper 2010; Dotson et al. 2013; Yarmolinsky et al. 2009). Recent studies have revealed that 

certain metabolic peptides may mediate aspects of gustatory processing. Indeed, an 

extensive palette of metabolic peptides has recently been associated with specific subtypes 

of taste receptor cells. In addition to their well-established roles outside the gustatory 

system, these orally expressed metabolic peptides/receptors have been shown to modulate 

taste responsiveness (see Cai et al. 2014; Dotson et al. 2013 for a review).

This recent revelation of metabolic influence upon taste responsiveness offers new strategies 

and therapeutic alternatives to offset a severe worldwide obesity epidemic. The ability to 

modulate taste responsiveness without disturbing fine-tuned postprandial hormone and 

peptide orchestration, responsible for metabolic homeostasis, could potentially bear 

significant benefits for a growing population.

Taste, Food Intake/Preference, and Metabolic Disease

It has been hypothesized by many that taste strongly affects ingestive behavior and, as such, 

nutrient intake. A large body of research indicates that individuals who possess heightened 

taste perception differ in their intake of foodstuffs (see Dotson et al. 2012a and Hayes et al. 

2013 for a review). To illustrate, decades of research have shown that enhanced bitter taste 

perception is associated with the avoidance of certain foods, including specific fruits and 

vegetables (e.g., Dinehart et al. 2006; Drewnowski et al. 1997, 1998, 1999, 2000; Fischer et 

al. 1961; Glanville and Kaplan 1965; Jerzsa-Latta et al. 1990; Tepper et al. 2009). For 

example, the perceived bitterness evoked by tasting various types of vegetables (e.g., 

brussels sprouts, kale, asparagus) was shown to predict the preference for those vegetables, 

as well as self-reported measures of vegetable intake (Dinehart et al. 2006). Indeed, bitter 
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taste perception is thought to have evolved to detect toxins in plants, vegetables, and foods 

and to modulate the ingestion of them (Ames et al. 1990; Drewnowski and Gomez-Carneros 

2000).

The most well-characterized human taste phenotype is the relative responsiveness of 

individuals to the bitter taste evoked by the compounds phenylthiocarbamide (PTC) and 6-n-

propylthiouracil (PROP) (see Wooding 2006 for a review). It has been proposed by many 

(e.g., Dinehart et al. 2006; Duffy and Bartoshuk 2000; Tepper 2008) that taste sensitivity/

responsiveness to PROP/PTC can be used as a marker for individual differences in taste 

perception that influence food preferences and intake. For example, children identified as 

insensitive to PROP consumed more vegetables than did “taster” children during a free-

choice intake test (Bell and Tepper 2006). These children also expressed greater “liking” for 

raw broccoli relative to taster children in a hedonic test (Bell and Tepper 2006). Moreover, 

genetic variation in the gene TAS2R38, which encodes for a T2R receptor that is activated 

by PROP/PTC, is also associated with vegetable intake (e.g., Sacerdote et al. 2007; Sandell 

et al. 2014). Genetic variation in the gene TAS2R38 has also been associated with 

macronutrient selection in preschool children (Hoppu et al. 2015). Additionally, in a sample 

of female subjects, sensitivity/responsiveness to the bitterness of PROP was shown to be 

associated with lower acceptance of cruciferous and selected green and raw vegetables 

(Drewnowski et al. 1998, 1999, 2000). Similarly, female PTC non-tasters reported greater 

use of cooked turnip and raw watercress than did PTC tasters (Jerzsa-Latta et al. 1990). 

Colon cancer patients who tasted PROP as more bitter also reported less vegetable intake 

(Basson et al. 2005). Collectively, these data suggest that individuals that have a strong 

response to bitter taste, along with a concomitant altered perceived taste sensation evoked by 

certain foods, such as vegetables, reduced their intake of these foods, thereby leaving them 

susceptible to perturbations in metabolic homeostasis. Consistent with this postulation, bitter 

taste sensitivity/responsiveness has been associated with daily energy intake, BMI, 

adiposity, and risk factors for cardiovascular disease (Choi and Chan 2014; Duffy 2004; 

Fischer et al. 2014; Goldstein et al. 2005; Kamphuis and Westerterp-Plantenga 2003; Keller 

et al. 2014; Shafaie et al. 2013; Tepper 1999; Tepper et al. 2008; Tepper and Ullrich 2002).

Although less well studied, variation in sweet taste responsiveness also impacts vegetable 

preference and intake. For example, as with the perceived bitterness of certain foods, 

perceived sweetness was shown to predict the preference for sampled vegetables, as well as 

vegetable intake in adults (Dinehart et al. 2006; Drewnowski et al. 1999). It has also been 

demonstrated that a higher preference for sucrose solutions was associated with increased 

preferences for sweet desserts (Drewnowski et al. 1999). The perceived sweetness of foods 

has also been shown, by multiple investigators, to be correlated with BMI (Bartoshuk et al. 

2006; Drewnowski et al. 1985; Salbe et al. 2004). Responsiveness to other taste qualities has 

also been associated with energy consumption and BMI (Bertoli et al. 2014; Fischer et al. 

2014; Keast et al. 2014; Skrandies and Zschieschang 2015). It has been well documented 

that taste responsiveness can also influence alcohol ingestion and preference (e.g., Allen et 

al. 2014; Bachmanov et al. 2003; Blednov et al. 2008; Blizard 2007; Brasser et al. 2010, 

2012; Dotson et al. 2012c; Duffy et al. 2004a, b; Hayes et al. 2011, 2013; Hinrichs et al. 

2006; Kampov-Polevoy et al. 1998, 2014; Lange et al. 2010; Lanier et al. 2005; Wang et al. 
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2007) providing another route through which gustatory functioning may impact upon body 

weight maintenance and adiposity.

The association between food intake, body weight maintenance, and taste functioning is 

further highlighted by data from human clinical studies on the effects of taste loss that result 

from various clinical conditions or the treatment of such conditions. For example, otitis 

media and tonsillectomy, both of which can result in damage to gustatory nerves, are 

associated with enhanced palatability of energy-dense foods and with weight gain 

(Bartoshuk et al. 2012; Huang et al. 2012; Landis et al. 2005; Peracchio et al. 2012). Reports 

have suggested that surgical interventions in the head and neck area can lead to reports of 

taste defects and weight loss (Caldas et al. 2013; Woschnagg et al. 2002). Several studies 

have suggested that stroke patients with damage to area associated with gustatory 

functioning report taste abnormalities and have weight regulation problems (Dutta et al. 

2013; Finsterer et al. 2004; Green et al. 2008; Heckmann et al. 2005). A significant fraction 

of cancer patients have altered taste perception and exhibit both decreased food intake and 

weight loss (Baharvand et al. 2013; Boltong and Keast 2012; Cohen et al. 2014; Comeau et 

al. 2001; Epstein and Barasch 2010; Hutton et al. 2007; Mahmoud et al. 2011; Mattsson et 

al. 1992; Peregrin 2006; Sánchez-Lara et al. 2010). Individuals from other various clinical 

populations, such as chronic hepatitis C (Klimacka-Nawrot et al. 2010; Musialik et al. 

2012), HIV/AIDS (Heald and Schiffman 1997), and myasthenia gravis (Kabasawa et al. 

2013) patients, also display taste and appetite abnormalities. Many drugs used to treat 

chronic medical conditions also impact upon taste perception and lead to dysgeusia (Doty et 

al. 2008; Imoscopi et al. 2012). Poor appetite, weight loss, and under-nutrition are frequently 

observed among elderly admitted to hospital (Mowe and Bohmer 2002; Mowe et al. 1994). 

Research has suggested that taste perception is impaired during normal aging (Bartoshuk 

1989; Boesveldt et al. 2011; Cowart 1989; Heft and Robinson 2010; Methven et al. 2012; 

Mojet et al. 2001; Murphy 1993; Schiffman 1997; Stevens 1996), even more so in 

hospitalized older adults (Solemdal et al. 2014; Toffanello et al. 2013). Taste loss may be 

one of several factors contributing to poor appetite, reduced dietary intake, and weight loss 

in elderly patients (Chen et al. 2001; Fuchida et al. 2013; Schiffman and Graham 2000; 

Schiffman and Wedral 1996; Ship et al. 1996). Lastly, patients whose primary complaint is 

taste loss have also shown nutritional abnormalities (Malaty and Malaty 2013; Mattes and 

Cowart 1994; Mattes-Kulig and Henkin 1985).

Problems with the Strength of the Link Between Gustatory Functioning and 

Ingestive Behavior/Body Mass Accumulation

Lack of Gustatory Specificity

In reports that have demonstrated an association between the functioning of a particular 

component of the gustatory system (e.g., taste receptors) and food intake/body mass, the 

authors have hypothesized that any observed association was mediated by that component’s 

influence on taste perception. While it is intuitive, and perhaps parsimonious, to assume that 

taste functioning directly and substantially influences nutrient preference and intake, it is 

also possible that taste function varies along with some other factor that is more directly 

influencing ingestive behaviors. Indeed, in addition to their expression in the oral-nasal 
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cavity, it is now well known that many molecules traditionally associated with the 

functioning of the gustatory system, particularly those expressed in taste receptor cells, are 

expressed in tissues all over the body where they appear to aid these tissues in sensing the 

general chemical milieu of their respective environments (Behrens and Meyerhof 2010, 

2011; Dotson et al. 2010). For example, taste receptors, as well as other key components of 

the gustatory sensory transduction cascade, are expressed in tissues of the gastroin-testinal 

tract, where they appear to play a role in hormone secretion as well as in the nutrient-

dependent regulation of metabolism (Akiba et al. 2009; Batchelor et al. 2011; Bezencon et 

al. 2006, 2007; Daly et al. 2012, 2013; Dotson et al. 2008, 2010; Dyer et al. 2005, 2007; 

Hass et al. 2010; Jang et al. 2007; Janssen and Depoortere 2013; Janssen et al. 2011; Jeon et 

al. 2011; Kaji et al. 2009; Kokrashvili et al. 2009a, b; Mace et al. 2009; Margolskee et al. 

2007; Max et al. 2001; Moran et al. 2010, 2014; Rozengurt et al. 2006; Sternini 2007; 

Swartz et al. 2012; van der Wielen et al. 2014; Widmayer et al. 2011, 2012; Young et al. 

2009). Thus, functional variation in any of these molecules could impact upon food intake 

via their influence on postingestive functioning (postingestive functioning has been shown 

to have a substantial impact on ingestive behaviors; see Smith 1998 for a comprehensive 

review). Canonical “taste” transduction components have also be shown to be expressed in 

the liver (Taniguchi 2004; Toyono et al. 2007), pancreas (Kojima et al. 2014; Kyriazis et al. 

2012, 2014; Medina et al. 2014; Nakagawa et al. 2009; Taniguchi 2004), adipose tissue 

(Masubuchi et al. 2013; Simon et al. 2013), kidney (Kiuchi et al. 2006; Rajkumar et al. 

2014), heart (Foster et al. 2013), respiratory system (Deshpande et al. 2010; Lee et al. 2014; 

Shah et al. 2009; Tizzano et al. 2011), thymus (Max et al. 2001), lymphocytes (Kiuchi et al. 

2006; Masubuchi et al. 2013; Simon et al. 2013), leukocytes (Malki et al. 2015), sperm 

(Kitagawa et al. 2001; Kiuchi et al. 2006; Max et al. 2001; Meyer et al. 2012; Mosinger et 

al. 2013; Voigt et al. 2012), brain (Max et al. 2001; Ren et al. 2009; Shin et al. 2010b), and 

other tissues (Wauson et al. 2012, 2013). Thus, it cannot be ruled out that functional 

variation in these key components of the gustatory system, which are conventionally 

associated with taste function, are impacting upon ingestive behaviors and/or body weight 

accumulation via their extraoral expression and function.

Lack of Experimental Control

As detailed above, a large body of research suggests a link between taste functioning and 

food preference and intake. However, there are a substantial number of studies that suggest 

no links exist (e.g., Choi 2014; Drewnowski et al. 2007; Frijters and Rasmussen-Conrad 

1982; Grinker 1978; Kaminski et al. 2000; Mattes and Labov 1989; Niewind et al. 1988; 

Yackinous and Guinard 2002). These discrepancies in the literature likely result from the 

confounding influence of a variety of other, uncontrolled, factors that can influence 

ingestive behavior. Indeed, eating is a complex behavior with multiple factors that can 

influence the amount of food ingested in a given meal, including, but not limited to, age, 

sex, prior experiences, social and cultural norms, as well as body, health, and weight 

attitudes (Beckett et al. 2014; Smith 1996, 2000a). These factors may interact with taste 

functioning to alter and/or obscure any putative relationship between it and food intake. 

Unfortunately, few researchers have attempted to control for the influence of the other 

factors or to assess the combined influence of these factors in a single study (however cf. 

Bouthoorn et al. 2014; Burd et al. 2013; Duffy et al. 2010). Thus, despite this relatively large 
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body of evidence that indicates that gustatory functioning can influence nutritional intake, a 

growing number of researchers are questioning the nature and/or strength of the role that 

taste functioning plays in the mediation of food intake and maintenance of body weight 

(e.g., Beckett et al. 2014; Donaldson et al. 2009; Hayes et al. 2013).

Moreover, the direction of the effect is unclear in these studies. When significant 

associations are observed between variation in taste perception and food intake and obesity, 

it is assumed that changes in taste functioning are influencing feeding behavior. However, it 

is also possible that the condition of being obese itself and/or associated physiological 

changes associated with obesity (e.g., chronic inflammation) could impact upon taste 

functioning (e.g., Chevrot et al. 2013; Cohn et al. 2010; Feng et al. 2014).

A More Systematic Evaluation of Taste’s Influence on Ingestive Behaviors 

is Needed

As detailed above, the experiments designed to link the functioning of the gustatory system 

to changes in food intake conducted using human subjects are problematic because the link 

created between taste and food intake is weak at best because of the correlational nature of 

these experiments, lack of experimental control, and lack of gustatory specificity. At least 

partially as a result, treatments for obesity that target the orosensory functioning are virtually 

nonexistent (although see Allison et al. 2001). Providing convincing evidence that taste can 

influence the development of obesity could lead to the development of novel treatments that 

target the gustatory system (Dotson et al. 2010; Sprous and Palmer 2010).

To alleviate at least some of these problems related to the lack of control of experimental 

variables, some researchers have used animal models in lieu of human experimentation to 

investigate the link between taste functioning and ingestive behaviors. Controlled animal 

experimentation has greatly increased our understanding of the functional organization of 

the taste by allowing for invasive manipulations of the gustatory system that would not be 

possible in humans. By assessing the functional consequence of a given manipulation, and 

not just correlating natural phenotypic variation as has been done in the studies detailed in 

the previous sections of this review, researchers would be able to more strongly link taste 

perception to ingestive behavior (e.g., Spector 2000).

To further increase experimental control, and hence the power of the potential link that can 

be established between taste and food intake, the use of a systematic, precise method of 

measuring food intake is needed. Duffy et al. reported that many of the published studies 

designed to investigate the link between taste perception and ingestive behaviors often 

employ food intake inventories that typically include short frequency questionnaires to 

assess intake of foodstuffs (e.g., saturated fat, fruits, vegetables, whole grains, alcohol) 

(Duffy et al. 2009). Participants are asked to recall the amount of food eaten, of listed foods, 

during a specified time frame—a task requiring access to factual memories of past 

experiences. Participants may under- or over-report intake, leading to inaccurate conclusions 

about diet-disease relationships. As such, methods focusing less on factual memory would 

increase the accuracy of dietary assessment. In addition, social valuation bias, which may 
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cause the underreporting of certain, unhealthy foods (Hebert et al. 2008), may also lead to 

the underreporting of actual intake by ≥30 % (e.g., Teal et al. 2007).

In addition to being able to more accurately determine actual food intake, the use of 

systematic, precise intake measuring techniques also allow researchers to ask questions 

related to exactly how the ingestion occurs (i.e., the assessment of ingestive behavior), in 

addition to how much an individual ingests over some period of time (i.e., food intake; 

Smith 2000c). Most mammals, including humans, eat in discrete bouts or meals (Collier 

1980; Davis 1989; Strubbe and Woods 2004). The processes governing the onset and offset 

of a meal in essence determine the total intake of the animal and represent the major 

behavioral mechanism by which energy balance and ultimately body mass are controlled 

(Cummings and Overduin 2007; Davis and Campbell 1973; Meguid et al. 1998; Smith 1996; 

Strubbe and Woods 2004). Accordingly, a comprehensive understanding of the mechanisms 

underlying the regulation of food intake, as well as its dysfunction, as occurs in the case of 

obesity, requires an analysis of how various endocrine and neural signals interact to control 

ingestive behavior. Meal pattern analysis provides just that: a detailed analysis of the size, 

frequency, and temporal distribution of meals in free feeding animals. Moreover, facets of 

these patterns (e.g., meal size versus meal number) are neurally dissociable (Meguid et al. 

1996, 1997, 1998; Smith 2000b). Decades of research have demonstrated that an assortment 

of factors can influence these parameters including changes in diet, deprivation, diurnal and 

ovarian rhythms, pregnancy and lactation, operant contingencies, experience, brain lesions, 

social stimuli, neurotransmitters, neuromodulators, and drugs (e.g., Boggiano et al. 2007; 

Burton-Freeman et al. 1997; Cooper et al. 2006; Davoodi et al. 2009; de Castro 2004; de 

Castro and de Castro 1989; Farley et al. 2003; Larue-Achagiotis and Le Magnen 1980; 

Leibowitz et al. 1993; Levitsky 1970; Lutz et al. 1995; Melhorn et al. 2010; Moran 2008; 

Morgan et al. 2002; Richard et al. 2011; Santollo and Eckel 2008; Smith 2000b; Tabarin et 

al. 2007; Tempel et al. 1989; Varma et al. 1999; Zorrilla et al. 2005). For example, it is well 

known that when postingestive influences are eliminated or minimized (e.g., via sham 

feeding), the size of ingested meals increases (e.g., Davis and Campbell 1973; Nissenbaum 

and Sclafani 1987, 1988; Sclafani and Nissenbaum 1987). What had never been directly 

investigated using meal pattern analysis was whether taste input does significantly influence 

long-term food intake and bodyweight maintenance and, if so, how it would be manifested 

in regard to ingestive behavior (e.g., meal size versus meal number).

The Effects of Gustatory Neurotomy on Body Mass and Food Intake

Our laboratory has used meal pattern analysis to evaluate the influence of gustatory neural 

input on food intake and body weight accumulation. In these experiments, we were able to 

more closely link taste functioning to intake by making focal manipulations in rodents. 

Peripheral gustatory deafferentation was produced in these animals by bilateral transection 

of the chorda tympani, glossopharyngeal, and greater superficial petrosal nerves. These are 

the primary nerves that transmit information from taste buds in the oral cavity to the CNS. 

These nerve transections effectively remove the input from ~90 % of the taste receptor cells, 

which, in turn, degenerate after nerve transection (e.g., Miller 1977; Spector 2003).
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There were two principal outcomes from these experiments. First, rats that had bilateral 

transection of the chorda tympani, glossopharyngeal, and greater superficial petrosal nerves 

(i.e., TRIPLEx rats) initially lost significantly more body mass after surgery and stabilized at 

a significantly lower mean weight relative to control rats (Fig. 1 and Dotson et al. 2012b). 

That is to say that in the absence of gustatory neural input from the tongue and palate, body 

mass was more stable compared with the more progressive course of weight gain observed 

in controls. Second, the loss resulted in a drop in caloric intake that was affected primarily 

through decreases in meal number and not in the size of the meals that the rats took (Fig. 2 

and Dotson et al. 2012b). Interestingly, the post-surgical loss and stabilization in body mass 

in the TRIPLEx rats is similar to that observed in rats that received Roux-en-Y gastric 

bypass (Bueter et al. 2011; Hajnal et al. 2010; Le Roux et al. 2011; Shin et al. 2010a). The 

efficacy of treatment of obesity via gastric bypass is vastly superior relative to what is seen 

with pharmacological interventions or dietary restriction regimens.

These results are generally consistent with the literature regarding the effects of gustatory 

neurotomy on body mass and food intake (unfortunately, none of these studies used meal 

pattern analysis to assess how any observed changes in intake were being manifested). For 

example, in a report by Grill and Schwartz, rats that had bilateral chorda tympani and 

glossopharyngeal nerve transections maintained a significant weight loss, relative to 

controls, 20 days postsurgery (Grill and Schwartz 1992). Another group of researchers 

reported that when the chorda tympani, glossopharyngeal, and the pharyngeal branch of the 

vagus nerves were bilaterally transected, rats lost significant levels of body mass, and, 

depending on the nature and composition of the diet to which the animals have access, these 

rats do not recover their baseline levels of body mass until anywhere between 1 and 5 weeks 

(Jacquin 1983; Miller and Teates 1986). Similar results were also seen when these nerves 

were cut in addition to the anterior palatine nerve, which innervates the taste buds of the 

incisive papilla in the rat (Vigorito et al. 1987).

These results are also generally consistent with the literature regarding the effects of 

gustatory nerve damage in human subjects. As detailed above, otitis media and 

tonsillectomy, both of which can result in damage to gustatory nerves, are associated with 

enhanced palatability of energy-dense foods and with weight gain. Reports have suggested 

that surgical interventions in the head and neck area can also lead to reports of taste defects. 

For example, middle ear surgery can cause damage to the CT nerve and lead to taste loss 

(e.g., Gopalan et al. 2005; Guinand et al. 2010; Huang et al. 2012; Lauerma and Paalassalo 

1995; McManus et al. 2011, 2012; Michael and Raut 2007; Saito et al. 2001) and changes in 

food intake patterns (Lauerma and Paalassalo 1995).

Problems with the Interpretation of Studies Investigating the Impact of 

“Gustatory” Neurotomies on Ingestive Behavior and Body Mass

The interpretation of findings from studies investigating the impact of cranial nerve 

transection on ingestive behavior and body mass must be viewed with some degree of 

caution because, in addition to carrying afferent sensory information from taste buds to the 

CNS, many of these nerves have other functions. For example, in the experiments where the 

pharyngeal branch of the vagus was transected, there is no evidence that this nerve 
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innervates taste buds, but it does provide substantial motor innervation to the pharynx 

(Contreras et al. 1980; Jinkins 2000), which could have a significant impact upon feeding 

behavior and body mass (see Dotson et al. 2012b for more details). In addition to 

innervating taste buds, both the chorda tympani and glossopharyngeal nerves also contain 

parasympathetic fibers that innervate the salivary glands (Bradley et al. 1985; Contreras et 

al. 1980; Kim et al. 2004; Smith and Breathnach 1990). Thus, transection of these nerves 

could affect the salivary content of the oral cavity and, in turn, influence ingestive behaviors. 

The greater superficial petrosal and glossopharyngeal nerves also possess somatosensory 

afferents, the loss of which could influence feeding behaviors. Indeed, it has been shown 

that trigeminal deafferentation of the anterior tongue leads to significant decreases in food 

intake and body weight (Jacquin and Zeigler 1983). Thus, however unlikely it may be, as a 

result of these confounding issues, it cannot be entirely dismissed that changes in the 

salivary content of the oral cavity or a decrease in oral somatosensory signals in rats with 

gustatory neurotomies could contribute to the change in ingestive behaviors observed in 

these animals (see Dotson et al. 2012b for a thorough discussion of these issues).

Conclusions and Future Directions

Our “TRIPLEx” data provide strong support for the importance of gustatory neural input in 

the regulation of body mass (Dotson et al. 2012b). However, given the caveats detailed 

above, the development of more selective interventions/manipulations that exclusively target 

gustatory pathways is still needed to establish a rock-solid link between gustatory function 

and food intake and body mass regulation.

Other methods of manipulating gustatory function, such as the use of genetic knockout 

mouse models, could be useful in establishing a stronger link. The use of knockout mouse 

models to examine the functioning of the gustatory system, as well as a variety of other 

biological functions (Picciotto 1999), has been rapidly expanding. These models have been 

used to study the role of particular gene products or to inactivate various tissues or 

biological structures to determine the relative necessity and/or sufficiency of that structure in 

mediating a given physiological process or behavior. However, there are problems endemic 

in the use of “global” knockout animals for this purpose: (1) the chronic disruption of the 

production of a given gene product over the lifespan of the animal and (2) the systemic 

disruption of that gene product’s influence in all tissues in which it is normally expressed. 

As detailed in the preceding sections, many molecules traditionally associated with the 

functioning of the gustatory system, especially those present in taste receptor cells, are also 

expressed in various other tissues throughout the body. As a result, global knockouts may 

possess extraneous phenotypes that can influence any dependent variable of interest.

It has been reported upon cursory inspection that animals from many different genetic KO 

models designed to affect the functioning of the peripheral taste system have no apparent 

body mass and/or food intake deficits when compared to control animals (e.g., KOs of T1R 

family genes, PLCβ2, TRPM5, P2X2/P2X3, CALHM1; Cockayne et al. 2005; Jiang et al. 

1997; Vingtdeux et al. 2011; Zhang et al. 2003; Zhao et al. 2003). However, upon closer 

inspection, when researchers have looked for changes in the variables over longer periods of 

time, differences in body mass and/or food intake have been revealed. For example, it was 
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reported that CALHM1 KOs were “visually indistinguishable” from their WT littermates 

(Vingtdeux et al. 2011). However, a more detailed and longer term examinations found 

deficits in body mass, as well as in macronutrient intake, relative to control mice (Hellekant 

et al. 2015; Tordoff et al. 2014). Similar results have been observed with other KO models 

of gustatory transduction in the periphery (TRPM5 and T1R3 KOs; e.g., Damak et al. 2013; 

Minaya 2014). Collectively, these data strongly suggest that genetic KO designed to affect 

the functioning of the peripheral gustatory system are effective models to study the influence 

of taste on ingestive behaviors and body mass accumulation.

To deal with the problems associated with the use of global KO models, the use of tissue-

specific, conditional knockout and transgenic mouse models should be used to better and 

more specifically link ingestive behavior and gustatory functioning. To date, almost no 

experiments using such models have been used to explore gustatory functioning in intact 

mice (however, see Chandrashekar et al. 2010). This is likely because of the difficulty in 

identifying proteins expressed primarily or exclusively in gustatory tissues. The promoters 

from genes such as these are needed to create constructs/vectors designed to express a given 

experimental gene in a tissue-specific fashion (Zheng and Baum 2008).

Additionally, gustatory functioning can be studied by delivering foreign DNA, RNA, and/or 

siRNA in cells. There are several methods available for transferring foreign genes into cells 

(e.g., lipofection, particle-mediated gene transfer (gene gun), electroporation, viral gene 

transfer, nanoparticle-mediated gene delivery; Jin et al. 2009; Stone et al. 2002). The 

promise of these gene delivery techniques is hampered by the difficulty of in vivo delivery 

into targeted cells (e.g., taste receptor cells). However, many of these difficulties have been 

overcome by researchers (e.g., Gray and Zolotukhin 2011; La Sala et al. 2013; Unciti-

Broceta et al. 2011; Zhang et al. 2012; Zheng et al. 2012). Similar to the use of tissue-

specific knockout models, in spite of the impact that the use of these gene delivery methods 

has had in biomedicine, there has been relatively limited use of this approach in the 

chemical senses, especially in the analysis of taste perception. Finally, the use of 

pharmacological approaches to disrupt gustatory functioning can allow for acute, local 

disruption in the oral cavity and not in central tissues (Elson et al. 2010; Eylam and Spector 

2002).

Thus, the use of such techniques to create animal models that have specific deficiencies in 

gustatory functioning, in combination with the use of meal pattern analysis, will allow for 

the investigation of the functions of particular genes in a spatially and temporally regulated 

fashion, overcoming the issues endemic with genetic association studies as well as those 

related to the use of gustatory neurotomies and greatly increase the strength of any 

conclusions derived from experiments designed to investigate the link between taste and 

ingestive behaviors.

Finally, it should be mentioned that the use of animal models in basic and preclinical 

biomedical research has focused disproportionately on male animals (Clayton and Collins 

2014). However, women now account for roughly half of all participants in NIH-supported 

clinical research, which is subject to NIH's Policy on the Inclusion of Women in Clinical 

Research. An over-reliance on male animals may obscure understanding of key sex 
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influences on health processes and outcomes (Clayton and Collins 2014). Indeed, the 

National Institutes of Health (NIH) has recently laid out policies dictating that the basic 

science research that the organization funds must consider both females and males (NIH 

Notice Number NOT-OD-15-102). Thus, researchers that take advantage of the benefits 

inherent in the use of animal models in their attempts to further explore the putative link 

between gustatory functioning and ingestive behaviors should include female animals in 

their experimental plans.

In conclusion, we are proposing a new line of research that addresses the gaps in our 

knowledge regarding the strength of association between taste perception and eating 

behaviors and how perturbations in taste functioning can impact upon energy homeostasis. 

Indeed, results from sophisticated and carefully crafted animal research studies could greatly 

advance our scientific understanding—an understanding that could potentially lead to novel 

therapeutic strategies aimed at reducing food intake and controlling obesity and other 

lifestyle-related diseases that increasingly plague our society.
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Fig. 1. 
Body mass values assessed for sham, CTx, and TRIPLEx groups measured over the entire 

pre- and postsurgical period (means±SE). CTx=rats that had combined bilateral transection 

the chorda tympani nerve and exposure of the greater superficial petrosal nerve; 

TRIPLEx=rats that had combined bilateral transection of the chorda tympani nerve, greater 

superficial petrosal nerve, and glossopharyngeal nerve. Reproduced, with permission, from 

Dotson et al. (2012b)
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Fig. 2. 
Daily meal bout size (left), meal bout number (middle), and meal bout rate (right) when 

ingesting a sweetened-milk diet (top) and an oil-chow mash (bottom) by sham and TRIPLEx 

groups measured for 3 weeks postsurgery. Reproduced, with permission, from Dotson et al. 

(2012b)
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