Skip to main content
Log in

Acute kidney injury: prediction, prognostication and optimisation for liver transplant

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

The definition and diagnostic criteria of renal dysfunction in cirrhosis have undergone significant recent changes. Acute kidney injury (AKI) is defined by a change in serum creatinine of ≥ 26.4 µmol/L (0.3 mg/dL) in < 48 h. Its severity is defined by stages. Chronic kidney disease (CKD) is defined by a reduction in the estimated glomerular filtration rate (GFR) to < 60 mL/min for more than 3 months. Both AKI and CKD can be related to reduced renal perfusion, the so-called functional renal failure; or due to structural damage to the renal parenchyma. Hemodynamic changes and excess inflammation are the pathophysiological processes that predispose the cirrhotic patient to the development of functional AKI. Events that cause further perturbation of hemodynamics or promote further inflammation such as bacterial infection will precipitate AKI. Management starts by removing potential precipitating factors and replenish the intravascular volume. Albumin is the preferred volume expander as it has multiple properties that can significantly reduce the extent of inflammation as well as improving the intravascular volume. Non-responders to albumin infusion should receive vasoconstrictor therapy such as terlipressin, titrated to patient’s blood pressure response, and is effective in approximately 50% of patients. All patients with renal and liver dysfunction should be evaluated for liver transplantation, with renal replacement therapy as a bridge. Guidelines are in place for combined liver and kidney transplants. Future studies on AKI should evaluate the effects of vasoconstrictors on renal function as defined by recent criteria, and to develop biomarkers to identify susceptible patients so to institute treatment early.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACLF:

Acute-on-chronic liver failure

AKI:

Acute kidney injury

ATN:

Acute tubular necrosis

CI:

Confidence interval

CKD:

Chronic kidney disease

DAMP:

Damage associated molecular pattern

EABV:

Effective arterial blood volume

HRS:

Hepatorenal syndrome

ICA:

International Club of Ascites

IL-6:

Interleukin-6

MELD-Na:

Model for end-stage liver disease—sodium

NGAL:

Neutrophil gelatinase-associated lipoprotein

NSBB:

Non-selective beta blocker

OR:

Odds ratio

PAMP:

Pathogen associated molecular pattern

RRT:

Renal replacement therapy

sCr:

Serum creatinine

SBP:

Spontaneous bacterial peritonitis

SIRS:

Systemic inflammatory response syndrome

SLKT:

Simultaneous liver kidney transplant

TNF-α:

Tumour necrosis factor-alpha

UTI:

Urinary tract infection

References

  1. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–77.

    CAS  PubMed  Google Scholar 

  2. Wong F, O'Leary JG, Reddy KR, Garcia-Tsao G, Fallon MB, Biggins SW, et al. Acute kidney injury in cirrhosis: baseline serum creatinine predicts patient outcomes. Am J Gastroenterol. 2017;112:1103–10.

    CAS  PubMed  Google Scholar 

  3. Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013;62:131–7.

    PubMed  Google Scholar 

  4. Belcher JM, Garcia-Tsao G, Sanyal AJ, Bhogal H, Lim JK, Ansari N, et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology. 2013;57:753–62.

    CAS  PubMed  Google Scholar 

  5. Angeli P, Gines P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. Gut. 2015;64:531–7.

    CAS  PubMed  Google Scholar 

  6. Wong F, Reddy KR, O'Leary JG, Tandon P, Biggins SW, Garcia-Tsao G, et al. Impact of chronic kidney disease on outcomes in cirrhosis. Liver Transpl. 2019;25:870–80.

    PubMed  Google Scholar 

  7. Salerno F, Gerbes A, Ginès P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007;56:1310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.

    CAS  PubMed  Google Scholar 

  9. Wong F, Nadim MK, Kellum JA, Salerno F, Bellomo R, Gerbes A, et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut. 2011;60:702–9.

    PubMed  Google Scholar 

  10. European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69:406–60.

    Google Scholar 

  11. Fagundes C, Barreto R, Guevara M, Garcia E, Solà E, Rodríguez E, et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol. 2013;59:474–81

    PubMed  Google Scholar 

  12. Piano S, Rosi S, Maresio G, Fasolato S, Cavallin M, Romano A, et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. J Hepatol. 2013;59:482–9.

    PubMed  Google Scholar 

  13. Angeli P, Garcia-Tsao G, Nadim M, Parikh CR. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. J Hepatol. 2019;71:811–22.

    PubMed  Google Scholar 

  14. Wong F, Boyer TD, Sanyal AJ, Pappas SC, Escalante S, Jamil K. Reduction in acute kidney injury stage predicts survival in patients with type-1 hepatorenal syndrome. Nephrol Dial Transplant. 2019. https://doi.org/10.1093/ndt/gfz048.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol. 2015;63:1272–84.

    CAS  PubMed  Google Scholar 

  16. Møller S, Bendtsen F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018;38:570–80.

    PubMed  Google Scholar 

  17. Wong F. Recent advances in our understanding of hepatorenal syndrome. Nat Rev Gastroenterol Hepatol. 2012;9:382–91.

    CAS  PubMed  Google Scholar 

  18. Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J Mol Sci. 2018;19:10.

    Google Scholar 

  19. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197–209.

    PubMed  Google Scholar 

  20. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41:3–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Altamirano J, Fagundes C, Dominguez M, García E, Michelena J, Cárdenas A, et al. Acute kidney injury is an early predictor of mortality for patients with alcoholic hepatitis. Clin Gastroenterol Hepatol. 2012;10:65–71.

    PubMed  Google Scholar 

  22. Maiwall R, Chandel SS, Wani Z, Kumar S, Sarin SK. SIRS at admission is a predictor of AKI development and mortality in hospitalized patients with severe alcoholic hepatitis. Dig Dis Sci. 2016;61:920–9.

    CAS  PubMed  Google Scholar 

  23. Gameiro J, Agapito Fonseca J, Monteiro Dias J, Melo MJ, Jorge S, Velosa J, et al. Prediction of acute kidney injury in cirrhotic patients: a new score combining renal, liver and inflammatory markers. Int J Nephrol Renovasc Dis. 2018;11:149–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sujan R, Cruz-Lemini M, Altamirano J, Simonetto DA, Maiwall R, Axley R, et al. A validated score predicts acute kidney injury and survival in patients with alcoholic hepatitis. Liver Tranpl. 2018;24:1655–64.

    Google Scholar 

  25. Wong F, Reddy R, Tandon P, O’Leary JG, Garcia-Tsao G, Lai J, et al. The natural history of stages 2 and 3 acute kidney injury in hospitalized patients with decompensated cirrhosis and ascites. J Hepatol. 2019;70:e691.

    Google Scholar 

  26. Solé C, Solà E, Huelin P, Carol M, Moreira R, Cereijo U, et al. Characterization of inflammatory response in hepatorenal syndrome: Relationship with kidney outcome and survival. Liver Int. 2019;39:1246–55.

    PubMed  PubMed Central  Google Scholar 

  27. Wong F, Leung W, Al Beshir M, Marquez M, Renner EL. Outcomes of patients with cirrhosis and hepatorenal syndrome type 1 treated with liver transplantation. Liver Transpl. 2015;21:300–7.

    PubMed  Google Scholar 

  28. Ekpanyapong S, Reddy KR. Infections in Cirrhosis. Curr Treat Options Gastroenterol. 2019;17:254–70.

    PubMed  PubMed Central  Google Scholar 

  29. Wong F, O’Leary JG, Reddy KR, Patton H, Kamath PS, Fallon MB, et al. The new consensus definition of acute kidney injury accurately predicts mortality in infected cirrhotic patients. Gastroenterology. 2013;145:1280–8.

    PubMed  Google Scholar 

  30. Fernández J, Acevedo J, Prado V, Mercado M, Castro M, Pavesi M, et al. Clinical course and short-term mortality of cirrhotic patients with infections other than spontaneous bacterial peritonitis. Liver Int. 2017;37:385–95.

    PubMed  Google Scholar 

  31. Tandon P, Abraldes JG, Keough A, Bastiampillai R, Jayakumar S, Carbonneau M, et al. Risk of bacterial infection in patients with cirrhosis and acute variceal hemorrhage, based on Child-Pugh class, and effects of antibiotics. Clin Gastroenterol Hepatol. 2015;13:1189–96.e2.

    Google Scholar 

  32. Wong F, Angeli P. New diagnostic criteria and management of acute kidney injury. J Hepatol. 2017;66:860–1.

    PubMed  Google Scholar 

  33. Bolignano D, Zoccali C. Non-proteinuric rather than proteinuric renal diseases are the leading cause of end-stage kidney disease. Nephro Dial Transpl. 2017;32(suppl 2):ii194–ii199.

    CAS  Google Scholar 

  34. Wong F. Drug insight: the role of albumin in the management of chronic liver disease. Nat Clin Pract Gastroenterol Hepatol. 2007;4:43–51.

    CAS  PubMed  Google Scholar 

  35. Jalan R, Schnurr K, Mookerjee RP, Sen S, Cheshire L, Hodges S, et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology. 2009;50:555–64.

    CAS  PubMed  Google Scholar 

  36. Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61:396–407.

    CAS  PubMed  Google Scholar 

  37. Fernández J, Clària J, Amorós A, Aguilar F, Castro M, Casulleras M, et al. Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis. Gastroenterology. 2019;157:149–62.

    PubMed  Google Scholar 

  38. Salerno F, Navickis RJ, Wilkes MM. Albumin treatment regimen for type 1 hepatorenal syndrome: a dose-response meta-analysis. BMC Gastroenterol. 2015;15:167.

    PubMed  PubMed Central  Google Scholar 

  39. Piano S, Schmidt HH, Ariza X, Amoros A, Romano A, Hüsing-Kabar A, et al. Association between grade of acute-on-chronic liver failure and response to terlipressin and albumin in patients with hepatorenal syndrome. Clin Gastroenterol Hepatol. 2018;16:1792–1800.e3.

    CAS  PubMed  Google Scholar 

  40. Facciorusso A, Chandar AK, Murad MH, Prokop LJ, Muscatiello N, Kamath PS. Comparative efficacy of pharmacological strategies for management of type 1 hepatorenal syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2017;2:94–102.

    PubMed  Google Scholar 

  41. Moller S, Hansen EF, Becker U, Brinch K, Henriksen JH, Bendtsen F. Central and systemic hemodynamic effects of terlipressin in portal hypertensive patients. Liver. 2000;20:51–9.

    CAS  PubMed  Google Scholar 

  42. Martín-Llahí M, Pépin MN, Guevara M, Díaz F, Torre A, Monescillo A, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–9.

    PubMed  Google Scholar 

  43. Sanyal AJ, Boyer T, Garcia-Tsao G, Regenstein F, Rossaro L, Appenrodt B, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–8.

    CAS  PubMed  Google Scholar 

  44. Boyer TD, Sanyal AJ, Wong F, Frederick RT, Lake JR, O'Leary JG, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150:1579–89.e2.

    Google Scholar 

  45. Sanyal AJ, Boyer TD, Frederick RT, Wong F, Rossaro L, Araya V, et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment Pharmacol Ther. 2017;45:1390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cavallin M, Piano S, Romano A, Fasolato S, Frigo AC, Benetti G, et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: a randomized controlled study. Hepatology. 2016;63:983–92.

    CAS  PubMed  Google Scholar 

  47. Boyer TD, Wong F, Sanyal AJ, Pappas SC, Jamil K. Time for a new, more inclusive endpoint for treatment of type 1 hepatorenal syndrome (HRS-1)? Small changes in serum creatinine of >20% are equivalent to HRS reversal in predicting survival and need for renal replacement therapy during treatment of HRS-1 with terlipressin and albumin [Abstract]. Hepatology 2016;64:1030A–1A.

    Google Scholar 

  48. Wong F, Pappas S, Vargas HE, Frederick T, Sanyal A, Jamil K. The diagnosis of hepatorenal syndrome: How much does use of the 2015 revised consensus recommendations affect earlier treatment and serum creatinine at treatment start? J Hepatology. 2019;70:e692.

    Google Scholar 

  49. Alessandria C, Ottobrelli A, Debernardi-Venon W, Todros L, Cerenzia MT, Martini S, et al. Noradrenaline vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol. 2007;47:499–505.

    CAS  PubMed  Google Scholar 

  50. Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol. 2008;103:1689–97.

    CAS  PubMed  Google Scholar 

  51. Singh V, Ghosh S, Singh B, Kumar P, Sharma N, Bhalla A, et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol. 2012;56:1293–8.

  52. Saif RU, Dar HA, Sofi SM, Andrabi MS, Javid G, Zargar SA. Noradrenaline versus terlipressin in the management of type 1 hepatorenal syndrome: a randomized controlled study. Indian J Gastroenterol. 2018;37:424–9.

    PubMed  Google Scholar 

  53. Nassar AP Jr, Farias AQ, D'Albuquerque LA, Carrilho FJ, Malbouisson LM. Terlipressin versus norepinephrine in the treatment of hepatorenal syndrome: a systematic review and meta-analysis. PLoS One. 2014;9:e107466.

    Google Scholar 

  54. Arora V, Maiwall R, Rajan V, Jindal A, Shasthry SM, Kumar G, et al. Terlipressin is superior to noradrenaline in the management of acute kidney injury in acute on chronic liver failure. Hepatology. 2018. https://doi.org/10.1002/hep.30208(Epub ahead of print).

    Article  PubMed  Google Scholar 

  55. Angeli P, Volpin R, Gerunda G, Craighero R, Roner P, Merenda R, et al. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology. 1999;29:1690–7.

    CAS  PubMed  Google Scholar 

  56. Wong F, Pantea L, Sniderman K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology. 2004;40:55–64.

    CAS  PubMed  Google Scholar 

  57. Pomier-Layrargues G, Paquin SC, Hassoun Z, Lafortune M, Tran A. Octreotide in hepatorenal syndrome: a randomized, double-blind, placebo-controlled, crossover study. Hepatology. 2003;38:238–43.

    CAS  PubMed  Google Scholar 

  58. Cavallin M, Kamath PS, Merli M, Fasolato S, Toniutto P, Salerno F, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology. 2015;62:567–74.

    CAS  PubMed  Google Scholar 

  59. Nadim MK, Kellum JA, Davenport A, Wong F, Davis C, Pannu N, et al. Hepatorenal syndrome: the 8th International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2012;16:R23.

    PubMed  PubMed Central  Google Scholar 

  60. Zhang Z, Maddukuri G, Jaipaul N, Cai CX. Role of renal replacement therapy in patients with type 1 hepatorenal syndrome receiving combination treatment of vasoconstrictor plus albumin. J Crit Care. 2015;30:969–74.

    CAS  PubMed  Google Scholar 

  61. Angeli P, Rodriguez E, Piano S, Ariza X, Morando F, Solà E, et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut. 2015;64:1616–22.

    PubMed  Google Scholar 

  62. Allegretti AS, Parada XV, Eneanya ND, Gilligan H, Xu D, Zhao S, et al. Prognosis of patients with cirrhosis and AKI who initiate RRT. Clin J Am Soc Nephrol. 2018;13:16–25.

    PubMed  Google Scholar 

  63. Utako P, Emyoo T, Anothaisintawee T, Yamashiki N, Thakkinstian A, Sobhonslidsuk A. Clinical outcomes after liver transplantation for hepatorenal syndrome: a systemic review and meta-analysis. Biomed Res Int. 2018;2018:5362810.

    PubMed  PubMed Central  Google Scholar 

  64. Ginès P, Solà E, Angeli P, Wong F, Nadim MK, Kamath P. Hepatorenal syndrome. Nat Rev Disease Primers. 2018;4:23.

    PubMed  Google Scholar 

  65. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Google Scholar 

  66. Simultaneous liver kidney (SLK) allocation. Organ procurement and transplant network policy. https://optn.transplant.hrsa.gov/media/1888/kidney_policynotice_slk_201606.pdf

  67. Policy 8: allocation of kidneys. Organ procurement and transplant network policies. https://optn.transplant.hrsa.gov/media/1200/optn_policies.pdf#nameddest=Policy_08.

  68. Cannon RM, Jones CM, Davis EG, Eckhoff DE. Effect of renal diagnosis on survival in simultaneous liver-kidney transplantation. J Am Coll Surg. 2019;228(536–44):e3.

    Google Scholar 

  69. Belcher JM, Coca SG, Parikh CR. Creatinine change on vasoconstrictors as mortality surrogate in hepatorenal syndrome: systematic review and meta-analysis. PLoS ONE. 2015;10:e0135625.

    PubMed  PubMed Central  Google Scholar 

  70. Ginès P, Guevara M, Arroyo V, Rodés J. Hepatorenal syndrome. Lancet. 2003;362:1819–27.

    PubMed  Google Scholar 

  71. Sun DQ, Zheng CF, Lu FB, Van Poucke S, Chen XM, Chen YP, et al. Serum lactate level accurately predicts mortality in critically ill patients with cirrhosis with acute kidney injury. Eur J Gastroenterol Hepatol. 2018;30:1361–7.

    CAS  PubMed  Google Scholar 

  72. Maiwall R, Pasupuleti SSR, Bihari C, Rastogi A, Singh PK, Naik V, et al. Incidence, risk factors, and outcomes of transition of acute kidney injury to chronic kidney disease in cirrhosis: a prospective cohort study. Hepatology. 2019. https://doi.org/10.1002/hep.30859(Epub ahead of print).

    Article  PubMed  Google Scholar 

  73. Slack AJ, McPhail MJ, Ostermann M, Bruce M, Sherwood R, Musto R, et al. Predicting the development of acute kidney injury in liver cirrhosis–an analysis of glomerular filtration rate, proteinuria and kidney injury biomarkers. Aliment Pharmacol Ther. 2013;37:989–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Belcher JM. Acute kidney injury in liver disease: role of biomarkers. Adv Chronic Kidney Dis. 2015;22:368–75.

    PubMed  Google Scholar 

  75. Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. CJASN. 2017;12:149–73.

    CAS  PubMed  Google Scholar 

  76. Maiwall R, Kumar A, Bhardwaj A, Kumar G, Bhadoria AS, Sarin SK. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study. Liver Int. 2018;38:654–64.

    CAS  PubMed  Google Scholar 

  77. Markwardt D, Holdt L, Steib C, Benesic A, Bendtsen F, Bernardi M, et al. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. Hepatology. 2017;66:1232–41.

    CAS  PubMed  Google Scholar 

  78. Huelin P, Solà E, Elia C, Solé C, Risso A, Moreira R, et al. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis. A prospective study. Hepatology. 2019;70:319–33.

    CAS  PubMed  Google Scholar 

  79. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.

    PubMed  Google Scholar 

  80. Formica RN Jr. Simultaneous liver kidney transplantation. Curr Opin Nephrol Hypertens. 2016;25:577–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Wong.

Ethics declarations

Conflict of interest

Dr. Wong has received consulting fees from Mallinckrodt Pharmaceuticals and Ferring Pharmaceuticals, and research funding from Mallinckrodt Pharmaceuticals and Ferring Pharmaceuticals. Dr. Jagarlamudi has nothing to declare.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagarlamudi, N., Wong, F. Acute kidney injury: prediction, prognostication and optimisation for liver transplant. Hepatol Int 14, 167–179 (2020). https://doi.org/10.1007/s12072-020-10018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-020-10018-0

Keywords

Navigation