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Abstract

In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 

position of cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many 

roles, particularly in suppressing transposable and repeat elements in DNA. Moreover, in many 

cellular systems, cell lineage specification is accompanied by DNA demethylation at the 

promoters of genes expressed at high levels in the differentiated cells. However, since direct 

cleavage of the C-C bond connecting the methyl group to the 5 position of cytosine is 

thermodynamically disfavoured, the question of whether DNA methylation was reversible 

remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten-

Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular 

oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as α-ketoglutarate) 

to oxidise the methyl group of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-

generated oxidised methylcytosines are intermediates in at least two pathways of DNA 

demethylation, which differ in their dependence on DNA replication. In the decade since their 

discovery, TET enzymes have been shown to have important roles in embryonic development, cell 
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lineage specification, neuronal function and cancer. We review these findings and discuss their 

implications here.
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1. Introduction

The biochemical activity of ten-eleven translocation proteins was reported ten years ago in a 

collaboration between the Aravind and Rao labs (Iyer et al. 2009; Tahiliani et al. 2009). In 

this article, we review these and subsequent findings in the field, with a focus on published 

studies from our labs.

2. Overview of the evolution of TET/JBP proteins

In 2009, the three mammalian members of the TET family were predicted to be members of 

the large superfamily of 2-oxoglutarate (2OG)- and Fe(II)-dependent (2OGFe) dioxygenases 

(Iyer et al. 2009). TET proteins are the animal homologs of the kinetoplastid JBPs (base J-

binding proteins) which oxidise the methyl group of thymine to yield 5-hydroxyuracil 

(5hU), which is subsequently modified with a sugar moiety to yield Base J (Yu et al. 2007; 

Iyer et al. 2009; Iyer et al. 2013; Bullard et al. 2014). In contrast, TET enzymes were 

predicted to oxidize 5-methylcytosine (5mC), also a 5-methyl pyrimidine, because two of 

the three vertebrate TET proteins—TET1 and TET3— contain a CXXC domain, known to 

bind unmethylated Cytosine-Guanine (CpG) sequences. Thus, TET proteins were predicted 

to act on the methyl group of 5mC rather than that of thymine (Iyer et al. 2009). Although 

TET2 does not currently possess a CXXC domain, the primordial TET2 did contain such a 

domain; however, the CXXC and catalytic domains of TET2 were separated during 

evolution through a chromosomal inversion (Ko et al. 2013) (figure 1a).

The prediction that TET proteins were 5-methylcytosine oxidases was experimentally 

verified in 2009 (Tahiliani et al. 2009). The use of recombinant TET proteins confirmed that 

TET proteins not only oxidized 5mC to 5-hydroxymethylcytosine (5hmC) (Iyer et al. 2009; 

Tahiliani et al. 2009) but also carried out two additional oxidations, converting 5hmC to 5-

formyl and 5-carboxylcytosine (5fC and 5caC, respectively) (Tahiliani et al. 2009; He et al. 
2011; Ito et al. 2011; Crawford et al. 2016) (figure 1b). These oxidised methylcytosines (oxi-

mC) are intermediates in at least two pathways of DNA demethylation as described below.

The TETs and the JBPs define a distinct family within the double-stranded β-helix fold 

2OGFe-dioxygenase superfamily. Within the superfamily they are more closely related to 

the AlkB family, members of which specialize in the oxidative repair of N6-alkyl adducts to 

adenine and the resetting of N6-methyladenosine marks in eukaryotic DNA and RNA 

(Aravind and Koonin 2001; Iyer et al. 2016). This suggests that both the TET/JBP and AlkB 

families diversified as part of an ancient radiation of nucleic acid-modifying 2OGFe-
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dioxygenases. Indeed, both share certain common features in their nucleic acid binding 

interface (Pastor et al. 2013).

The TET/JBP family additionally includes members from several bacteriophages, certain 

bacteria and diverse eukaryotes such as the filamentous fungi, the chlorophyte algae and 

basal land plants, and the heteroloboseans such as Naegleria (Iyer et al. 2009; Iyer et al. 
2013). Phylogenetic analysis indicates that the origin of TET/JBP family lies in the 

bacteriophages, where they are part of the highly diverse DNA-modification systems typical 

of DNA phages. In the phages, DNA modifications by TET/JBP enzymes are likely to help 

in evading host restriction and marking the genome for packaging into the phage-head. 

Notably, in several phages, the 5-hydroxymethylpyrimidine is further modified by 

phosphorylation by a P-loop kinase and is used as an intermediate for the generation of 

hypermodified bases (Iyer et al. 2009; Iyer et al. 2013; Lee et al. 2018).

The bacterial and phage versions already show a divergence into two types which might 

respectively act on 5mC and T. These appear to have been laterally transferred on more than 

one occasion to eukaryotes to give rise to their TET/JBP proteins (Iyer et al. 2009; Iyer et al. 
2013). Interestingly, TET/JBP proteins are also encoded by intracellular pathogenic bacteria 

such as Legionella and related genera. These proteins are predicted to function as effectors 

that are delivered into the eukaryotic host cell to modify its DNA. Thus, other than direct 

transfer from phages, such endo-parasitic bacteria might have also served as a conduit for 

the transfer of TET/JBP genes to eukaryotes (Iyer et al. 2009; Iyer et al. 2013). A 

comparable scenario has been proposed for the origin of the histone methylase H3K79 

methylase Dot1 from a Legionella effector secreted into eukaryotic host cells (Aravind et al. 
2011).

3. Enzymatic activities of TET proteins

Like all 2OGFe-dioxygenases, TET enzymes utilize 2OG, reduced iron (Fe(II)) and both 

atoms of molecular oxygen, to generate their oxidised substrates, with CO2 and succinate as 

byproducts (Hausinger 2004). Succinate, which structurally resembles 2OG, is an inhibitor 

of many 2OGFe-dioxygenases, including the TET enzymes (Xiao et al. 2012), whereas 

Vitamin C, which likely facilitates the reduction of Fe(III) at the active site back to Fe(II), is 

an activator of these enzymes (Blaschke et al. 2013; Yue et al. 2016).

A major function of mammalian TET proteins is to facilitate DNA demethylation through 

the production of oxi-mC through both passive (replication-dependent) and active 

(replication-independent) mechanisms (figure 1b). The first pathway relies on the fact that 

the maintenance DNA methyltransferase, DNMT1, efficiently methylates hemi-methylated 

CpGs, in which 5mC is present across from the unmethylated cytosine on the newly-

replicated strand. However, DNMT1 is much less efficient at methylating the unmodified 

CpGs on newly replicated DNA strands if an oxi-mC (rather than 5mC) is present on the 

template strand (Hashimoto et al. 2012; Otani et al. 2013). This process of TET-dependent 

‘passive’ DNA demethylation displays an absolute requirement for replication and for TET 

catalytic activity, and may be the major process that operates to demethylate the promoters 

and enhancers of genes that characterize specific cellular lineages during the process of cell 
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lineage specification (Inoue and Zhang 2011; Lio et al. 2019). A second, replication-

independent, mechanism of DNA demethylation relies on the ability of the DNA repair 

enzyme thymine DNA glycosylase (TDG) to excise 5fC and 5caC from hemi-modified DNA 

strands, a process that requires base excision repair to replace the original 5fC or 5caC with 

an unmodified cytosine (He et al. 2011; Maiti and Drohat 2011). This mechanism appears to 

make only a minor contribution, if any, to DNA demethylation in replicating cells. 

Moreover, TET-dependent active demethylation in the zygote is unaffected by TDG deletion, 

suggesting the existence of additional active demethylation pathways downstream of TET-

mediated oxidation (Guo et al. 2014). Intriguingly, a 5caC decarboxylase activity has been 

claimed in mouse embryonic stem cells (mESC) (Schiesser et al. 2012), although currently, 

there are no likely candidates in the human genome for such an activity.

Notably, most eukaryotes that possess one or more genes encoding a TET-like member of 

the TET/JBP-family proteins also code for a DNA methyltransferase (DNMT) gene (Iyer et 
al. 2009; Iyer et al. 2011), suggesting a strong functional link between these TET-like 

enzymes and DNA methylation in eukaryotes. In eukaryotes, other than animals and 

kinetoplastids, the TET/JBP enzymes of the amoeba Naegleria, the mushroom Coprinopsis 
cinerea and the chlorophyte alga Chlamydomonas reinhardtii have been biochemically 

characterized. Both Naegleria and C. cinerea TETs produce 5hmC, 5fC and 5caC in 

differing proportions using 5mC as a substrate (Chavez et al. 2014; Zhang et al. 2014). In 

fungi like C. cinerea, TET genes are genomically linked to novel transposon families, which 

belong to the so-called Kyajuka-Dileera-Zisupton class of transposons. TET genes have 

probably been widely disseminated across the chromosomes of the fungi by these 

transposons (Iyer et al. 2014), and their protein products appear to have a role in regulating 

the activity of the linked transposons in addition to marking certain regions of the chromatin. 

The TET from the yeast Schizosaccharomyces pombe is catalytically inactive but might 

have a role in inducing certain epigenetic states via a non-enzymatic mechanism (Iyer et al. 
2014).

An interesting recent finding was that one of the TET enzymes from the green alga C. 
reinhardtii utilizes ascorbate instead of 2OG as its essential co-substrate in vitro. The 

enzyme, CMD1, produces a mixture of stereoisomers of 5-glyceryl-methylcytosine (5gmC), 

in which the glyceryl moiety is linked to the -CH2 group at the 5 position of cytosine (Xue et 
al. 2019). Like the oxi-mCs generated by mammalian and fungal TET/JBP enzymes, 5gmC 

antagonized the repressive effects of DNA cytosine methylation; mutants lacking CMD1 

showed increased cytosine methylation and decreased expression of two genes encoding 

LHCSR3 (light-harvesting complex stress-related protein 3), a complex that is required for 

growth under conditions of high light intensity (Aravind et al. 2019; Xue et al. 2019).

4. 5hmC is present in euchromatin and is enriched at expressed genes 

and active enhancers

The genomes of most mammalian cell types can be roughly divided into euchromatic and 

heterochromatic compartments (Dekker et al. 2013), which correspond to actively 

transcribed and transcriptionally silent regions of the genome. These compartments were 
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originally defined by cytology and then later by immunocytochemistry, but have recently 

become amenable to definition using an unbiased genome-wide chromosome conformation 

capture method known as Hi-C. Briefly, principal component analysis of the interaction 

matrix obtained from Hi-C data can be used to partition the genome into A and B 

compartments that correspond, respectively, to euchromatin and heterochromatin 

(Lieberman-Aiden et al. 2009). Euchromatin is defined by positive PC1 values and high 

gene density; it contains expressed genes whose promoters bear the ‘active’ histone 

modification H3K4 trimethylation (H3K4me3), and replicates early during S phase (van 

Steensel and Belmont 2017). In contrast the heterochromatic compartment is gene-poor and 

transcriptionally silent, replicates during late S phase, is enriched for histone 3 lysine 9 di- 

and tri- methylation (H3K9me2 and me3), and is associated with the nuclear lamina (van 

Steensel and Belmont 2017).

In all cell types examined, 5hmC is most highly enriched in gene bodies of the most highly 

expressed genes, and also at the most active enhancers defined by the highest levels of 

histone 3 lysine 4 mono-methylation (H3K4me1) and histone 3 lysine 27 acetylation 

(H3K27Ac) (Tsagaratou et al. 2014; Lio et al. 2019) (figure 2a). In contrast, the TET 

substrate 5mC is present throughout the genome, in both euchromatin and heterochromatin. 

To determine the extent to which 5hmC was present in the heterochromatic, transcriptionally 

silent Hi-C B compartment, we integrated 5hmC mapping data from TAB-seq (Tet-Assisted 

Bisulfite Sequencing) (Hon et al. 2014) and CMS-IP (Cytosine-5-Methylene-Sulfonate 

Immunoprecipitation) (Huang et al. 2014) with Hi-C data from the same cell type—mouse 

embryonic stem cells (mESC). The data showed, unambiguously, that the bulk of 5hmC was 

in the euchromatic Hi-C A compartment (with similar observations in haematopoietic stem/

precursor cells, pro-B cells and natural-killer-T/NKT cells), as expected from the known 

overlap of 5hmC-containing regions with transcribed genes and active enhancers (Lopez-

Moyado et al. 2019).

5. Dynamic changes in 5mC and 5hmC at de novo enhancers during 

signal-dependent cell activation and differentiation

Studies in many different systems have established the general principle that transcription 

factors recruit TET enzymes to enhancers, where they deposit 5hmC and facilitate DNA 

demethylation (figure 2b). In the following sections, we describe the roles of TET proteins at 

three different types of immune cell enhancers examined in the Rao lab, which control a 

developmental switch in immature B cells and two signal-dependent processes in mature B 

cells and in T ‘regulatory’ cells respectively.

TET proteins mediate 5hmC deposition and DNA demethylation at the Igκ locus during B 
cell development:

Rearrangement of the immunoglobulin light chain including the kappa chain (Igκ) occurs 

during the pro-B to pre-B switch in early B cell development, and is required for the 

expression of immunoglobulin M (IgM) on the surface of mature B cells (Hamel et al. 
2014). At least 3 Eκ enhancers are known to be important for germline Igκ locus 

transcription, a prerequisite for Igκ chain rearrangement: an intronic enhancer (iEκ), a 3′ 
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enhancer (3′Eκ) and a distal enhancer (dEκ) (Hamel et al. 2014). TET proteins are recruited 

to and deposit 5hmC at the 3′ and distal Eκ enhancers, which contain 2 and 3 CpG 

sequences respectively; the intronic κ enhancer, which is essential for κ chain 

rearrangement, does not contain any CpGs and so is unlikely to be a target of regulation by 

TET proteins, given that the vast majority of 5mC occurs symmetrically on CpGs (Lio et al. 
2016).

We generated mice in which deletion of the Tet2 and Tet3 genes was induced with Mb1-Cre, 

which is expressed at the early pro-B stage. Using pro-B cells from these mice, we showed 

that TET proteins are required for Igκ germline transcription and rearrangement by 

rendering the Igκ enhancers accessible. Mechanistically, TET2 co-immunoprecipitates under 

stringent conditions with PU.1 and E2A, two transcription factors essential for Igκ 
rearrangement and the pro-B to pre-B cell transition. The evidence supports a mechanism 

whereby TET proteins are recruited by PU.1 to the Igκ enhancers, and the associated 

increase in chromatin accessibility at the enhancers permits E2A and TET-induced IRF4 to 

bind the enhancers and facilitate subsequent germline transcription of the Igκ locus (Lio et 
al. 2016).

TET proteins act at activation-dependent ‘de novo’ enhancers to facilitate AID expression 
and class switch recombination (CSR) in mature B cells:

To avoid complications arising from TET deletion during development, we deleted the Tet2 
and Tet3 genes in mature B cells using Cre-ERT2, a tamoxifen-inducible fusion of Cre 

recombinase with the estrogen receptor ligand-binding domain. This inducible system 

permits a detailed kinetic analysis of 5hmC deposition, DNA demethylation and 

transcriptional and chromatin changes occurring over a four-day time period (Lio et al. 
2019). The experiments showed that TET enzymes regulate CSR in mature B cells activated 

with lipopolysaccharide (LPS) and Interleukin-4 (IL-4). Briefly, B cell activation results in 

rapid upregulation of the basic region/leucine zipper (bZIP) transcription factor BATF, and 

later upregulation of the activation-induced cytidine deaminase (AID). Both BATF and AID 

are essential for CSR, a process in which B cells replace the IgM-encoding exons with those 

encoding other antibody isotypes such as IgG1 or IgA. In the absence of TET proteins, CSR 

was reduced by 50%, but reconstitution with catalytically active, but not inactive, AID fully 

reconstituted CSR. The mechanism involves recruitment of TET proteins to at least two 

activation-dependent (‘de novo’) enhancers in the Aicda locus by BATF; in the absence of 

BATF, TET proteins were unable to mediate the progressive 5hmC deposition and DNA 

demethylation seen at these loci in wildtype cells (figure 3a).

TET proteins regulate an intronic enhancer required for the stable expression of FOXP3 in 
T regulatory cells:

Regulatory T (Treg) cells are a minor subpopulation of T cells that are critical for immune 

homeostasis and prevention of autoimmune disease (Sakaguchi et al. 2008; Lio and Hsieh 

2011; Josefowicz et al. 2012). The lineage-determining transcription factor for Treg cells is 

FOXP3; germline mutations in FOXP3 in either mice or humans, as well as induced deletion 

of the Foxp3 gene in healthy adult mice, leads to fulminant autoimmune disease (Sakaguchi 

et al. 2008; Josefowicz et al. 2012). Loss of TET function does not impair the development 
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of thymic Treg cells, but greatly impairs the stability of Foxp3 expression through cell 

division (Yue et al. 2016). The stability of Foxp3 expression is controlled by an intronic 

enhancer, CNS2, within the Foxp3 locus, in a manner linked to its DNA methylation status 

(Floess et al. 2007; Zheng et al. 2010; Feng et al. 2014; Li et al. 2014). CNS2 is fully 

methylated in naïve T cells but mainly demethylated in Treg cells (Floess et al. 2007). The 

demethylation is controlled by TET proteins, since Treg cells from mice lacking Tet2 and 

Tet3 (or Tet1 and Tet2) show DNA hypermethylation at CNS2 and consequent loss of Foxp3 
expression as a function of cell division (Yang et al. 2015; Yue et al. 2016) (figure 3b).

Tregs can be generated in vitro from naïve T cells by culturing them in the presence of 

TGFβ (Chen et al. 2003) and/or retinoic acid (RA) (Benson et al. 2007); these cells have 

been termed ‘induced’ Tregs (iTregs). However, iTregs generated under these conditions do 

not show demethylation of CNS2 (Floess et al. 2007; Yue et al. 2016). Rather, addition of 

the TET activator Vitamin C (Blaschke et al. 2013) to cultures of naïve T cells with TGFβ 
and/or RA results in full demethylation of CNS2 and a substantial increase in the stability of 

FOXP3 expression, compared to iTregs cultured with TGFβ or TGFβ + RA alone, in both 

mouse and human (Sasidharan Nair et al. 2016; Yue et al. 2016). Moreover, inhibition of the 

Vitamin C transporter reverses the demethylation status of CNS2, both in Vitamin C-treated 

iTregs in vitro and in peripheral Tregs generated in vivo (Sasidharan Nair et al. 2016).

6. Association of TET loss-of-function with cancer

In mouse models developed in the Rao lab, deletion of the Tet2 and Tet3 genes in developing 

T cells using CD4Cre resulted in the rapid oligoclonal expansion of a normally minor T cell 

population known as NKT cells, which recognize lipid antigens presented on a non-classical 

major histocompatibility complex protein (CD1d) and undergo controlled proliferation 

rather than being deleted in the thymus due to self-reactivity (Tsagaratou et al. 2017). The 

expansion is quickly followed by the development of aggressive transmissible T cell 

lymphomas in 100% of mice, which show various hallmarks of cancer, including DNA 

damage, and the mice succumb within 5–8 weeks (Tsagaratou et al. 2017; Lopez-Moyado et 
al. 2019). Similarly, deletion of both Tet2 and Tet3 in B cells using Mb1-Cre results in a 

fully-penetrant B cell lymphoma that arises from a few surviving B cells in these mice, and 

is fatal within 5 months (Lio et al. 2016). In both cases, deletion of either the Tet2 or Tet3 
genes alone resulted in a less dramatic phenotype, suggesting that profound TET deficiency 

was necessary. We proved this point in a different model system in which the Tet2 gene was 

disrupted in the germline and the Tet3 gene was inducibly deleted (i.e. adult Tet2 −/− Tet3 
fl/fl Mx1-Cre and Tet2−/− Tet3 fl/flCre-ERT2 mice, in which Cre recombinase is induced by 

injection of polyI:polyC and tamoxifen respectively (An et al. 2015)). In this system, 

tamoxifen-treated (but not mock-treated) mice almost immediately showed massive myeloid 

expansion with concomitant loss of T, B and erythroid cells, and rapidly developed an 

aggressive acute myeloid leukemia that caused them to succumb within 4–5 weeks of 

injection (An et al. 2015). Together these data indicate that profound TET loss-of-function 

predisposes cells to rapid, signal-dependent expansion that quickly progresses to frank 

malignancy.
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Even in the absence of TET coding region mutations, TET loss-of-function and low 5hmC 

levels are frequently observed in many different types of cancers (Ko et al. 2010; Huang and 

Rao 2014; Ko et al. 2015b; Marcais et al. 2017; Lemonnier et al. 2018), including both 

blood malignancies and solid tumours. This may occur as a result of silencing or degradation 

of TET proteins at different stages of gene expression, including transcriptional silencing as 

a result of TET promoter hypermethylation, post-transcriptional processes including 

microRNA-mediated silencing, and increased degradation, as posttranslational modifications 

differentially impact TET proteins stability (Cimmino et al. 2015; Ko et al. 2015a; Raffel et 
al. 2017; Wu et al. 2018). Additionally, hypoxia and metabolic alterations could lead to TET 

loss-of-function by impairing its enzymatic activity (along with other dioxygenases), by 

decreasing the levels of the substrates 2-oxoglutarate and molecular oxygen or by increasing 

the levels of the competitive inhibitor 2-hydroxyglutarate (2-HG) (Kaelin and McKnight 

2013; Losman and Kaelin 2013; Huang and Rao 2014; Ko et al. 2015b; Raffel et al. 2017). 

For example, gain-of-function mutations in the isocitrate dehydrogenases, IDH1 and IDH2, 

lead to accumulation of 2-HG, and mutations in these genes are frequently observed in 

patients with acute myeloid leukemia (AML) and glioblastoma (Dang et al. 2010; Cairns 

and Mak 2013; Losman and Kaelin 2013). Similarly, overexpression of the Branched chain 

amino acid transaminase 1 (BCAT1) gene, as reported in AML, leads to decreased levels of 

2-oxoglutarate and therefore low TET function (Raffel et al. 2017).

7. DNA hypermethylation in TET2-mutant cancers

Most studies of TET2-mutant cancers have focused on the fact that loss-of-TET function 

results in increased methylation at genomic regions where TET proteins play a 

transcriptional regulatory role. This focal DNA hypermethylation, which occurs primarily at 

promoters and enhancers, can result in transcriptional silencing of tumour suppressor genes 

and genes involved in DNA damage repair, thus promoting oncogenesis (Jones and Baylin 

2002; Baylin and Jones 2016). Indeed, focal DNA hypermethylation is commonly observed 

in tumours with impaired expression or activity of TET proteins. The presence of 

hypermethylation at these active genomic regions is consistent with the finding that 5hmC in 

wildtype cells is primarily present in euchromatin, at active enhancers and in the gene bodies 

of highly transcribed genes (Tsagaratou et al. 2014). DNA hypermethylation signature have 

been defined for many cancers, and some of these are characteristic of either TET2 
mutations or TET deficiency resulting from metabolic and other aberrations. For instance, 

both IDH-mutant and BCAT-overexpressing cancers have been shown to have a DNA 

hypermethylation signature that resembles that of TET-deficient cancers (Sasaki et al. 2012; 

Raffel et al. 2017). However, whether IDH-mutant and BCAT-overexpressing cancers show a 

second feature observed in TET-mutant cancers— DNA hypomethylation in 

heterochromatin—has not yet been resolved (see the following section).

8. TET deficiency is associated with a paradoxical loss of DNA 

methylation in heterochromatin

As detailed above, TET mutation or deficiency—which could result from TET coding region 

mutations, changes in mRNA or protein expression or stability, or metabolic alterations that 
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result in inhibition of TET enzymatic activity—results in increased DNA methylation at 

genomic regions, including enhancers and promoters active in the cell type being examined, 

as well as certain CTCF sites (Cimmino et al. 2015; Rasmussen et al. 2015; Flavahan et al. 
2016; Rasmussen and Helin 2016; Yue et al. 2016; Tsagaratou et al. 2017). This feature is 

expected from TET biochemical activity (figure 1b). Surprisingly, however, several studies 

that mapped DNA methylation, genome-wide, in TET-deficient cells noted unexpected and 

widespread decreases of DNA methylation (Hon et al. 2014; Lu et al. 2014; An et al. 2015; 

Tsagaratou et al. 2017). These hypomethylated regions did not overlap with active or 

regulatory regions of the genome, and so were largely ignored.

We recently reported a comprehensive analysis of DNA methylation in many different 

wildtype and TET-deficient cell types, including embryonic stem (ES) cells, neuronal 

precursor cells, haematopoietic stem cells, B cells and T cells (Lopez-Moyado et al. 2019). 

The TET-deficient cells bore individual deletions of the Tet1 or Tet2 genes, Tet2/3 double 

deletions, or triple deletions of all three TET genes, Tet1, Tet2 and Tet3. Our study revealed 

that in each of these distinct cell types, the widespread DNA hypomethylation observed in 

TET-deficient cells was confined to the heterochromatin compartment (Lopez-Moyado et al. 
2019). Notably, the heterochromatin hypomethylation cannot be explained simply by 

increased proliferation, since TET triple-deficient ES cells do not proliferate faster than their 

wildtype counterparts (Li et al. 2016). Rather, in Tet1-deficient mESC, we observed a 

relocalization of DNMT3A from the heterochromatic to the euchromatic compartment, to 

the sites where TET1 would bind in wildtype conditions. These data provide a potential 

mechanism for the heterochromatic DNA hypomethylation associated with TET mutations, 

independent of proliferation rate (figure 4).

In addition to focal hypermethylation, cancer genomes have long been known to have 

widespread DNA hypomethylation (Feinberg and Vogelstein 1983; Jones and Baylin 2002; 

Ehrlich 2009; Baylin and Jones 2016). In these cases, as well as in TET-deficient genomes, 

DNA hypomethylation is primarily present in the heterochromatic compartment (Lopez-

Moyado et al. 2019). Although we currently have a reasonable understanding of the 

biochemical mechanisms underlying focal hypermethylation and their consequences for 

gene transcription, the causes and consequences of DNA hypomethylation in cancer remain 

unclear.

9. Unexpected synergy between TET2 and DNMT3A mutations

Despite their opposing catalytic activities (TET removes DNA methylation whereas 

DNMT3A deposits this modification), TET2 and DNMT3A mutations are frequently 

observed, individually and together, in diverse blood malignancies including 

myelodysplastic syndromes (MDS), acute myeloid leukemias (AML) and peripheral T cell 

lymphomas (PTCL) (Couronne et al. 2012; Ley et al. 2013; Odejide et al. 2014; Palomero et 
al. 2014; Sakata-Yanagimoto et al. 2014; Papaemmanuil et al. 2016). A previous study 

(Zhang et al. 2016) comparing the phenotypes of Dnmt3a, Tet2, and double Dnmt3a/Tet2 
loss-of-function mutations in the mouse hematopoietic precursors found that the Dnmt3a/
Tet2 double mutation resulted in decreased survival and increased number of hematopoietic 

precursor cells and white cells (monocytes) in the peripheral blood, compared to that of the 
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mice singly deficient for Dnmt3a or Tet2. Additionally, we recently found that Dnmt3a/Tet2 
doubly-deficient cells displayed more profound losses of DNA methylation than Dnmt3a or 

Tet2 mutations alone, even though both mutations resulted in heterochromatic DNA 

hypomethylation to different extents (Lopez-Moyado et al. 2019). Potentially, the similar 

phenotypes of DNMT3A and TET2 mutations could be a result of the loss of oxi-mC (TET 

deletions will decrease the amount of 5hmC, 5fC and 5caC, whereas DNMT mutations will 

decrease the amount of 5mC, which is the substrate for the TET-mediated cytosine 

oxidations). Thus, our study (Lopez-Moyado et al. 2019) opens up the possibility that some 

of the similarities between DNMT3A and TET2 mutations are a result of a shared loss of 

DNA methylation in heterochromatin.

DNA hypomethylation has been associated with increased mutational load and genome 

instability (Chen et al. 1998; Eden et al. 2003; Gaudet et al. 2003). It is well known that 

cancer genomes display DNA hypomethylation which covers long regions of the genome 

and overlaps with lamina-associated domains, H3K9me2/3-marked, late-replicating regions 

of the genome (Berman et al. 2011; Hon et al. 2012; Zhou et al. 2018). Furthermore, it has 

been previously reported that cancer genomes display increased mutation rates in 

H3K9me3-marked regions of the genome (Schuster-Bockler and Lehner 2012). An 

interesting open question is if the heterochromatic DNA hypomethylation observed in TET 

deficient genomes could account for their increased levels of DNA damage, genome 

instability, and ultimately their role in oncogenesis. For instance, in the case of a NKT cell 

lymphoma that arises as a result of double Tet2/Tet3 deletion (Tsagaratou et al. 2017), there 

was an association between progressive loss of methylation, increased levels of DNA 

damage, pronounced enrichment for single-nucleotide variations (SNVs) in the 

heterochromatin, and genome instability (Lopez-Moyado et al. 2019). However, the 

relationship between oncogenic transformation and DNA hypomethylation in 

heterochromatin and cancer is only just beginning to be elucidated.

10. Hypomethylation of human heterochromatin is associated with 

increased replication fork stalling, DNA damage and chromosomal 

abnormalities

An interesting recent finding is that hypomethylation of heterochromatin causes DNA 

damage and chromosomal abnormalities through the induction of replication stress (Delpu et 
al. 2019). Cells deficient in DNA methylation struggle to complete S phase, suggesting an 

essential and unexplored role for DNA methylation in regulating DNA replication (Jacob et 
al. 2015; Haruta et al. 2016). One of the most striking examples of genomic instability 

triggered by hypomethylation involves the repetitive sequence, Satellite 2 (SAT2), which 

occurs in megabase-long tracts in the pericentromeric heterochromatin of human 

chromosomes 1 and 16 (Ehrlich 2009; Altemose et al. 2014). Gains and losses of the long 

arms of these two chromosomes are overrepresented across many types of cancers, as well 

as in aging cells, and correlate strongly with SAT2 hypomethylation (Qu et al. 1999; Suzuki 

et al. 2002; Tsuda et al. 2002; Neve et al. 2006). Striking chromosomal rearrangements 

involving SAT2 have also been reported in lymphocytes and fibroblasts from patients with 

the fatal genetic disease Immunodeficiency, Centromeric instability, and Facial anomalies 
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(ICF) syndrome, which is caused by germline mutations (including mutations in the de novo 
methyltransferase DNMT3B), that result in a dramatic loss of methylation at SAT2 (Ehrlich 

et al. 2001; Thijssen et al. 2015). Structural studies have demonstrated that sequences 

contained in SAT2 have the potential to fold into highly stable non-B DNA structures 

(Catasti et al. 1994). Such non-canonical DNA structures are known to stall replication forks 

leading to the formation of breaks and chromosomal rearrangements (Leon-Ortiz et al. 
2014), suggesting that hypomethylation of SAT2 may lead to chromosomal abnormalities 

through the dysregulation of genomic secondary structures and the induction of replication 

stress.

The Tahiliani Lab developed a single-molecule approach that combined DNA combing with 

fluorescence in situ hybridization (FISH) to directly visualize the impact of hypomethylation 

of SAT2 on replication. Replication dynamics in well-characterized ICF patient cell lines 

were compared to those in normally methylated cells. This approach revealed that SAT2 

hypomethylation results in increased DNA damage specifically at SAT2 and strongly 

impairs the efficiency of replicating these sequences (Delpu et al. 2019). Consistent with 

increased fork stalling at these sequences, they found increased levels of the single-stranded 

DNA (ssDNA) binding protein, RPA2, as well as asymmetric progression of sister 

replication forks within hypomethylated SAT2 sequences (Delpu et al. 2019). Together these 

findings indicate that impaired replication triggers the formation of chromosomal aberrations 

observed at hypomethylated SAT2 sequences and also suggests a mechanistic basis for how 

the loss of DNA methylation may contribute to genomic instability in diverse pathological 

conditions.

11. Conclusion and perspectives

The studies of TET protein function over the last decade have focused on its ability to 

facilitate DNA demethylation through the production of oxi-mC. It has only recently been 

recognized that loss of TET function can also compromise heterochromatin integrity, and 

that this process could be deleterious for genome stability and start cells on the road to 

oncogenic transformation. We anticipate that studies over the coming decade will elucidate 

the mechanisms involved.
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Figure 1. 
Ten-Eleven Translocation (TET) proteins and DNA modification. (a) TET family proteins. 

Mammalian genomes encode three members of the TET/JBP family: TET1, TET2, and 

TET3. The diagram depicts the domain structures and the length in amino acids (aa) of 

human TET proteins. The CXXC domains of TET1 and TET3 (red) bind unmethylated CpG 

sequences in DNA. Note that during evolution, the CXXC domain of primordial TET2 was 

separated from the TET2 catalytic domain due to chromosomal inversion and evolved as a 

different gene (IDAX or CXXC4). All three TET proteins contain cysteine-rich domains 

(green) followed by a C-terminal catalytic domain (purple). (b) TET-mediated DNA 

modifications and demethylation. DNA methyltransferases (DNMT) methylate unmodified 

cytosines (C) to yield 5-methylcytosine (5mC). TET proteins can successively oxidize 5mC 

to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 

(5caC). Among these three oxidized methylcytosines (oxi-mC), 5hmC is a stable 

modification and is the most abundant, accounting for ~1–10% of 5mC depending on the 

cell type, while 5fC and 5caC are ~100-fold and ~1000-fold less abundant than 5hmC. All 

three oxi-mCs are intermediates for DNA demethylation. During DNA replication, the 5mC 

at the CpG motif on the template strand pairs with unmodified CpG on the newly 

synthesized strand, resulting in the hemi-methylated CpG motif. The maintenance 

methyltransferase complex, DNMT1/UHRF1 binds to the hemi-methylated CpG and rapidly 

restores methylation on the CpG on the newly synthesized DNA, to restore symmetrical 
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CpG methylation. In contrast, the presence of oxi-mCs in the template strand inhibits the 

binding of DNMT1/UHRF1 to hemi-modified CpGs, thus preventing methylation of CpGs 

in the newly synthesized strand. This process is known as ‘passive’ DNA demethylation (top 

arrows). Additionally, 5fC and 5caC can be recognized and removed by thymine DNA 

glycosylase (TDG). The abasic site will be repaired by the base-excision repair (BER) 

system and replaced by an unmodified cytosine, a process termed ‘active’ (replication-

independent) DNA demethylation (bottom arrows).
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Figure 2. 
Regulation of enhancers by TET proteins. (a) 5hmC levels at enhancers show a strong 

positive correlation with enhancer activity. The diagram depicts all enhancers in naïve 

mouse B cells (n=22,539), ranked according to their relative levels of H3-lysine 4-

monomethylation (H3K4me1; a mark for most enhancers) and H3-lysine 27-acetylation 

(H3K27Ac; a mark for enhancer activity). The color indicates the relative enrichment of 

5hmC. In general, active enhancers bearing both marks (right) are enriched in 5hmC relative 

to poised enhancers bearing only the K3K4me1 mark (left). The figure was adapted from 

Lio et al. (2019) with permission. (b) Working model for TET-mediated enhancer regulation. 

Pioneer transcription factors (TF1, purple circle) are able to bind to nucleosomes at 

enhancers and recruit TET proteins. Using 2-oxoglutarate (2OG; also known as alpha-

ketoglutarate), reduced iron (Fe(II)) and O2, TET proteins oxidize 5mC into 5hmC at CpG 

motifs around the enhancer, releasing succinate and CO2. After rounds of DNA replication, 

the CpG motifs become demethylated and the enhancer becomes more accessible for 

binding of additional transcription factors (TF2, orange circle).
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Figure 3. 
Function of TET proteins in immune system. (a) TET proteins are required for the full 

potential of enhancers. During T cell development and B cell activation, transcription factors 

(TFs) recruit TET proteins to the key enhancers that promote the expression of lineage-

related genes (Tbx21 and Zbtb7b in T cells; Aicda in B cells) (Tsagaratou et al. 2014; Lio et 
al. 2019). TET proteins oxidize and demethylate enhancers, augmenting gene expression. In 

the absence of TET proteins, the inability to demethylate enhancers results in decreased 

gene expression, potentially by affecting chromatin conformation and the binding of 

additional transcription factors. (b) TET proteins are required for stable gene expression. A 

variety of transcription factors recruit TET proteins and assemble at the intronic enhancer 

(CNS2) of Foxp3, the lineage-defining transcription factor for regulatory T (Treg) cells. This 

results in the demethylation of ~12 CpGs located in the CNS2 enhancer, a process central to 

establishing and maintaining the stable expression of Foxp3 (Yue et al. 2016).
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Figure 4. 
Proposed model for loss of DNA methylation in heterochromatin of TET-deficient 

embryonic stem cells. Loss of TET proteins results in relocalization of the de novo 
methyltransferase DNMT3 proteins, from the heterochromatic compartment to euchromatin 

regions previously occupied by TET proteins. Potentially, this relocalization contributes both 

to the heterochromatic DNA hypomethylation and the euchromatin DNA hypermethylation 

observed in TET-deficient cells. Whether this relocalization also occurs in other systems 

with TET loss-of-function is still an open question. Adapted from López-Moyado et al. 
(2019).
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