Skip to main content

Advertisement

Log in

Involvement of Peroxiredoxin-3, Thioredoxin-2, and Protein Deglycase-1 in Cypermethrin-Induced Parkinsonism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Owing to its lipophilic nature, cypermethrin makes entry into the brain through the blood–brain barrier and causes severe damage to the nigrostriatal dopaminergic neurons after prolonged exposure. Following substantial accrual in the brain, cypermethrin induces the abnormal expression and accumulation of α-synuclein. Besides, cytochrome P450 2E1 (CYP2E1) causes free radical generation leading to lipid peroxidation in toxicant-induced parkinsonism. Conversely, 4-hydroxynonenal (4-HNE), a byproduct of lipid peroxidation, is known to contribute to neuronal damage. The current investigation aimed to explicate the participation of endogenous redox-sensitive proteins in cypermethrin-induced cellular and animal models of parkinsonism. The qualitative and quantitative expressions of selected redox-sensitive proteins were evaluated employing the standard procedures. Cypermethrin reduced the expression of peroxiredoxin 3 (Prx3), thioredoxin 2 (Trx2), and protein deglycase-1 (DJ-1). Knocking down of Prx3, Trx2, or DJ-1 further reduced the level of expression in the cypermethrin-treated group. Reduction in the expression of Prx3, Trx2, or DJ-1 was found to be associated with overexpression of α-synuclein and 4-HNE modification of proteins. Besides, cypermethrin increased the expression of CYP2E1, which was not altered after Prx3 or Trx2 knockdown. However, knocking down the DJ-1 augmented the level of CYP2E1 both in the cypermethrin-treated group and its respective control. The outcomes of the study demonstrate that cypermethrin reduces the level of Prx3, Trx2, and DJ-1 proteins. While the reduction in the expression of selected redox-sensitive proteins leads to α-synuclein overexpression and 4-HNE modification of proteins, DJ-1 attenuation is also linked with increased CYP2E1 expression, which in turn could lead to oxidative stress-mediated neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data are deposited to the institutional repository. The same may be possible to obtain from the corresponding author upon reasonable request.

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:10713. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  2. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113. https://doi.org/10.1038/nrn.2016.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arduíno DM, Esteves AR, Cardoso SM (2013) Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9(1):112–114. https://doi.org/10.4161/auto.22443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mohammadi H, Ghassemi-Barghi N, Malakshah O, Ashari S (2019) Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 70(2):74–89. https://doi.org/10.2478/aiht-2019-70-3263

    Article  CAS  PubMed  Google Scholar 

  5. Singh AK, Tiwari MN, Prakash O, Singh MP (2012) A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 10(1):64–71. https://doi.org/10.2174/157015912799362779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakesh O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33(2):404–415. https://doi.org/10.1016/j.neurobiolaging.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  7. Zhou L, Zhou M, Tan H, Xiao M (2020) Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway. Pestic Biochem Physiol 165:104547. https://doi.org/10.1016/j.pestbp.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Gourgouta M, Rumbos CI, Athanassiou CG (2019) Residual toxicity of a commercial cypermethrin formulation on grains against four major storage beetles. J Stored Prod Res 83:103–109. https://doi.org/10.1016/j.jspr.2019.05.001

    Article  Google Scholar 

  9. Eraslan G, Kanbur M, Silig Y, Karabacak M, Sarica ZS, Sahin S (2016) The acute and chronic toxic effect of cypermethrin, propetamphos, and their combinations in rats. Environ Toxicol 31(11):1415–1429. https://doi.org/10.1002/tox.22147

    Article  CAS  PubMed  Google Scholar 

  10. Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O, Singh MP (2010) Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res 44(12):1416–1424. https://doi.org/10.3109/10715762.2010.512041

    Article  CAS  PubMed  Google Scholar 

  11. Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP (2014) Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to parkinsonism. J Physiol Biochem 70(4):915–924. https://doi.org/10.1007/s13105-014-0359-7

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2015) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 51(2):448–465. https://doi.org/10.1007/s12035-014-8696-7

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP (2015) Cyclosporine A and MnTMPyP alleviate α-synuclein expression and aggregation in cypermethrin-induced parkinsonism. Mol Neurobiol 52(3):1619–1628. https://doi.org/10.1007/s12035-014-8954-8

    Article  CAS  PubMed  Google Scholar 

  14. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285(36):27850–27858. https://doi.org/10.1074/jbc.M110.101196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox AG, Winterbourn CC, Hampton MB (2009) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signaling. Biochem J 425(2):313–325. https://doi.org/10.1042/BJ20091541

    Article  CAS  PubMed  Google Scholar 

  16. Hanschmann EM, Lonn ME, Schutte LD, Funke M, Godoy JR, Eitner S, Hudemann C, Lillig CH (2010) Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3. J Biol Chem 285(52):40699–40705. https://doi.org/10.1074/jbc.M110.185827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Repici M, Giorgini F (2019) DJ-1 in Parkinson’s disease: clinical insights and therapeutic perspectives. J Clin Med 8(9):1377. https://doi.org/10.3390/jcm8091377

    Article  CAS  PubMed Central  Google Scholar 

  18. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JPY (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA 103(41):15091–15096. https://doi.org/10.1073/pnas.0607260103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Im JY, Lee KW, Woo JM, Junn E, Mouradian MM (2012) DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 21(13):3013–3024. https://doi.org/10.1093/hmg/dds131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopert P, Patel M (2014) Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Redox Biol 2:667–672. https://doi.org/10.1016/j.redox.2014.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan YF, Yang WJ, Xu Q, Chen HP, Huang XS, Qiu LY, Liao ZP, Huang QR (2015) DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway. Mol Med Rep 12(3):4734–4742. https://doi.org/10.3892/mmr.2015.3947

    Article  CAS  PubMed  Google Scholar 

  22. Van Pelt LF (1997) Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc 171(9):842–844

    Google Scholar 

  23. Gamble HJ (1980) A stereotaxic atlas of the rat brain. J Anat 131(1):199–200

    PubMed Central  Google Scholar 

  24. O’Neill E, Goisis RC, Haverty R, Harkin A (2019) L-alpha-aminoadipic acid restricts dopaminergic neurodegeneration and motor deficits in an inflammatory model of Parkinson’s disease in male rats. J Neurosci Res 97(7):804–816. https://doi.org/10.1002/jnr.24420

    Article  CAS  PubMed  Google Scholar 

  25. Mishra AK, Mishra S, Rajput C, Rasheed MSU, Patel DK, Singh MP (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33(2):377–387. https://doi.org/10.1007/s12640-017-9800-3

    Article  CAS  PubMed  Google Scholar 

  26. Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O (1832) Singh MP (2013) Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta 8:1227–1240. https://doi.org/10.1016/j.bbadis.2013.03.019

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 (PMID:14907713)

    Article  CAS  Google Scholar 

  28. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trist BG, Hare DJ, Double KL (2019) Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 18(6):e13031. https://doi.org/10.1111/acel.13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onyango IG, Khan SM, Bennett JP Jr (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci (Landmark Ed) 22:854–872. https://doi.org/10.2741/4521

    Article  CAS  Google Scholar 

  31. Zhang H, Go YM, Jones DP (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys 465(1):119–126. https://doi.org/10.1016/j.abb.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  32. De Simoni S, Goemaere J, Knoops B (2008) Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+. Neurosci Lett 433(3):219–224. https://doi.org/10.1016/j.neulet.2007.12.068

    Article  CAS  PubMed  Google Scholar 

  33. Roede JR, Hansen JM, Go YM, Jones DP (2011) Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system. Toxicol Sci 121(2):368–375. https://doi.org/10.1093/toxsci/kfr058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SMM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013:683920. https://doi.org/10.1155/2013/683920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biosa A, Sandrelli F, Beltramini M, Greggio E, Bubaccon L, Bisaglia M (2017) Recent findings on the physiological function of DJ-1: beyond Parkinson’s disease. Neurobiol Dis 108:65–72. https://doi.org/10.1016/j.nbd.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  36. Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY (2019) Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 51(3):175–188. https://doi.org/10.1007/s10863-019-09798-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nural H, He P, Beach T, Sue L, Xia W, Shen Y (2009) Dissembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson’s disease patients. Mol Neurodegener 4:23. https://doi.org/10.1186/1750-1326-4-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma N, Rao SP, Kalivendi SV (2019) The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease. Free Radic Biol Med 135:28–37. https://doi.org/10.1016/j.freeradbiomed.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  39. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Motine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(3):713–726. https://doi.org/10.1093/brain/awq008

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scudamore O, Ciossek T (2018) Increased oxidative stress exacerbates α-synuclein aggregation in vivo. J Neuropathol Exp Neurol 77(6):443–453. https://doi.org/10.1093/jnen/nly024

    Article  CAS  PubMed  Google Scholar 

  41. Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, Cho MJ, Lee SY (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280(31):28775–287784. https://doi.org/10.1074/jbc.M505362200

    Article  CAS  PubMed  Google Scholar 

  42. Subramaniam SR, Vergnes L, Franich NR, Reue K, Chesselet MF (2014) Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiol Dis 70:204–213. https://doi.org/10.1016/j.nbd.2014.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arkat S, Umbarkar P, Singh S, Sitasawad SL (2016) Mitochondrial peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in diabetic cardiomyopathy. Free Radic Biol Med 97:489–500. https://doi.org/10.1016/j.freeradbiomed.2016.06.019

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Suastegui WA, Ramos-Chavez LA, Rubio-Osornio M, Calvillo-Velasco M, Atzin-Mendez JA, Guevara J, Silva-Adaya D (2017) The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxid Med Cell Longev 2017:4680732. https://doi.org/10.1155/2017/4680732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Charul Rajput appreciates the Council of Scientific and Industrial Research (CSIR), India, for bestowing her fellowship for research. The generousness of the Department of Biotechnology, India, is also recognized for offering monetary support to the investigation as well as for providing research fellowship to Alika Sarkar. The CSIR-IITR communication number of this article is 3746.

Funding

The research was funded by the Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Contributions

Charul Rajput and Alika Sarkar generated, captured, and evaluated the experimental data as well as drawn and arranged the figures and images of the manuscript. The initial draft of the manuscript was also made available by the first two authors. Mahendra Pratap Singh hypothesized the experimental design and lengthily revised the text of the first version of the paper. All investigators endorsed the final description of the manuscript.

Corresponding author

Correspondence to Mahendra Pratap Singh.

Ethics declarations

Ethics Approval and Consent to Participate

The study involving animals was approved by the institutional animal ethics committee. Consent to participate in the study is not applicable.

Consent for Publication

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Charul Rajput and Alika Sarkar Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, C., Sarkar, A. & Singh, M.P. Involvement of Peroxiredoxin-3, Thioredoxin-2, and Protein Deglycase-1 in Cypermethrin-Induced Parkinsonism . Mol Neurobiol 58, 4745–4757 (2021). https://doi.org/10.1007/s12035-021-02456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02456-0

Keywords

Navigation