Skip to main content
Log in

Inhibition of the Nrf2/HO-1 Axis Suppresses the Mitochondria-Related Protection Promoted by Gastrodin in Human Neuroblastoma Cells Exposed to Paraquat

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondria are double-membrane organelles involved in the transduction of energy from different metabolic substrates into adenosine triphosphate (ATP) in mammalian cells. The oxidative phosphorylation system is comprised by the activity of the respiratory chain and the complex V (ATP synthase/ATPase). This system is dependent on oxygen gas (O2) in order to maintain a flux of electrons in the respiratory chain, since O2 is the final acceptor of these electrons. Electron leakage from this complex system leads to the continuous generation of reactive species in the cells. The mammalian cells exhibit certain mechanisms to attenuate the consequences originated from the constant exposure to these reactive species. In this context, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and one of the enzymes whose expression is modulated by Nrf2, heme oxygenase-1 (HO-1), take a central role in inducing cytoprotection in humans. Mitochondrial abnormalities are observed during intoxication and in certain diseases, including neurodegeneration. Mitochondrial protection promoted by natural compounds has attracted the attention of researchers due to the promising effects these agents induce experimentally. In this regard, we examined here whether and how gastrodin (GAS), a phenolic glucoside, would prevent the paraquat (PQ)-induced mitochondrial impairment in the SH-SY5Y cells. The cells were exposed to GAS (25 μM) for 4 h prior to the challenge with PQ at 100 μM for additional 24 h. The silencing of Nrf2 by siRNA or the inhibition of HO-1 by ZnPP IX suppressed the GAS-elicited cytoprotection. Therefore, GAS promoted mitochondrial protection by an Nrf2/HO-1-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. https://doi.org/10.1016/j.neuron.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  2. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  3. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2:e690

    Article  PubMed  PubMed Central  Google Scholar 

  5. Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37. https://doi.org/10.1007/978-94-007-2869-1_1

    Article  CAS  PubMed  Google Scholar 

  6. Capuano F, Guerrieri F, Papa S (1997) Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg Biomembr 29:379–384

    Article  CAS  PubMed  Google Scholar 

  7. Genova ML, Bianchi C, Lenaz G (2005) Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool: pathophysiological implications. Biofactors 25:5–20

    Article  CAS  PubMed  Google Scholar 

  8. Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27:11–21. https://doi.org/10.1007/s10540-007-9033-4

    Article  CAS  PubMed  Google Scholar 

  9. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I Kinetics of oxygen utilization. J Biol Chem 217:383–393

    CAS  PubMed  Google Scholar 

  10. Gibson GE, Blass JP, Beal MF, Bunik V (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 31:43–63

    Article  CAS  PubMed  Google Scholar 

  11. Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  CAS  PubMed  Google Scholar 

  12. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25:17–26. https://doi.org/10.1016/j.mam.2004.02.005

    Article  CAS  Google Scholar 

  13. Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741. https://doi.org/10.1074/jbc.R113.544635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  15. Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7:297–310. https://doi.org/10.1016/j.mito.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  16. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72. https://doi.org/10.1007/s12035-010-8113-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmad W (2013) Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Mol Neurobiol 47:399–424. https://doi.org/10.1007/s12035-012-8352-z

    Article  CAS  PubMed  Google Scholar 

  18. de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267–140213. https://doi.org/10.1155/2015/140267

    Article  CAS  Google Scholar 

  19. de Oliveira MR (2016) Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol Lett 258:185–191. https://doi.org/10.1016/j.toxlet.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  20. de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66. https://doi.org/10.1016/j.neuint.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  21. Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol 53:6078–6090. https://doi.org/10.1007/s12035-015-9515-5

    Article  CAS  PubMed  Google Scholar 

  22. Blajszczak C, Bonini MG (2017) Mitochondria targeting by environmental stressors: implications for redox cellular signaling. Toxicology 391:84–89. https://doi.org/10.1016/j.tox.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  23. Rodríguez-Arribas M, Yakhine-Diop SMS, Pedro JMB, Gómez-Suaga P, Gómez-Sánchez R, Martínez-Chacón G, Fuentes JM, González-Polo RA et al (2017) Mitochondria-associated membranes (MAMs): overview and its role in Parkinson’s disease. Mol Neurobiol 54:6287–6303. https://doi.org/10.1007/s12035-016-0140-8

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Yu S, Liu T, Kim JH, Blank V, Li H, Kong AN (2008) Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta 1783:1847–1856. https://doi.org/10.1016/j.bbamcr.2008.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18:1779–1791. https://doi.org/10.1021/tx050217c

    Article  CAS  PubMed  Google Scholar 

  29. Toroser D, Yarian CS, Orr WC, Sohal RS (2006) Mechanisms of gamma-glutamylcysteine ligase regulation. Biochim Biophys Acta 1760:233–244. https://doi.org/10.1016/j.bbagen.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  30. Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  31. Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP (2012) Effects of polyphenols on brain ageing and Alzheimer’s disease: focus on mitochondria. Mol Neurobiol 46:161–178. https://doi.org/10.1007/s12035-012-8282-9

    Article  CAS  PubMed  Google Scholar 

  32. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R et al (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383. https://doi.org/10.1124/pr.117.014753

    Article  PubMed  Google Scholar 

  33. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Asp Med 32:279–304. https://doi.org/10.1016/j.mam.2011.10.007

    Article  CAS  Google Scholar 

  34. Baur JA, Sinclair DA (2008) What is xenohormesis? Am J Pharmacol Toxicol 3:152–159. https://doi.org/10.3844/ajptsp.2008.152.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ (2009) Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis. Biofactors 35:146–160. https://doi.org/10.1002/biof.22

    Article  CAS  PubMed  Google Scholar 

  36. Calabrese V, Cornelius C, Trovato A, Cavallaro M, Mancuso C, Di Rienzo L, Condorelli D, De Lorenzo A et al (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16:877–883

    Article  CAS  PubMed  Google Scholar 

  37. de Oliveira MR (2016) Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. Biofactors 42:13–40. https://doi.org/10.1002/biof.1256

    Article  CAS  PubMed  Google Scholar 

  38. de Oliveira MR (2016) Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 29:35–44. https://doi.org/10.1016/j.mito.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  39. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860:727–745. https://doi.org/10.1016/j.bbagen.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  40. de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34:532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  41. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308. https://doi.org/10.1016/j.phrs.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  42. Oliveira MR, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM (2016) Epigallocatechin gallate and mitochondria—a story of life and death. Pharmacol Res 104:70–85. https://doi.org/10.1016/j.phrs.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  43. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55:2085–2101. https://doi.org/10.1007/s12035-017-0448-z

    Article  CAS  PubMed  Google Scholar 

  44. de Oliveira MR (2018) Carnosic acid as a promising agent in protecting mitochondria of brain cells. Mol Neurobiol (IN PRESS) https://doi.org/10.1007/s12035-017-0842-6

  45. de Oliveira MR, da Costa Ferreira G, Brasil FB, Peres A (2018) Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 axis in SH-SY5Y cells. Mol Neurobiol 55:989–1003. https://doi.org/10.1007/s12035-016-0380-7

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N et al (2017) Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54:2622–2635. https://doi.org/10.1007/s12035-016-9839-9

    Article  CAS  PubMed  Google Scholar 

  47. Chung HT, Ryter SW, Kim HP (2013) Heme oxygenase-1 as a novel metabolic player. Oxidative Med Cell Longev 2013:814058–814052. https://doi.org/10.1155/2013/814058

    Article  Google Scholar 

  48. Vanella L, Barbagallo I, Tibullo D, Forte S, Zappalà A, Li Volti G (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7:69075–69086. https://doi.org/10.18632/oncotarget.11923

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ollinger R, Wang H, Yamashita K, Wegiel B, Thomas M, Margreiter R, Bach FH (2007) Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid Redox Signal 9:2175–2185

    Article  PubMed  Google Scholar 

  50. Pae HO, Kim EC, Chung HT (2008) Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J Clin Biochem Nutr 42:197–203. https://doi.org/10.3164/jcbn.2008029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rochette L, Zeller M, Cottin Y, Vergely C (2018) Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes. Trends Endocrinol Metab 29:74–85. https://doi.org/10.1016/j.tem.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  52. Bach FH (2006) Carbon monoxide: from the origin of life to molecular medicine. Trends Mol Med 12:348–350

    Article  CAS  PubMed  Google Scholar 

  53. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SMD (2017) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to Paraquat through activation of the Nrf2/HO-1Axis. Mol Neurobiol 54:5961–5972. https://doi.org/10.1007/s12035-016-0100-3

    Article  CAS  PubMed  Google Scholar 

  56. Yang XD, Zhu J, Yang R, Liu JP, Li L, Zhang HB (2007) Phenolic constituents from the rhizomes of Gastrodia elata. Nat Prod Res 21:180–186. https://doi.org/10.1080/14786410601081997

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q et al (2018) A review on central nervous system effects of gastrodin. Front Pharmacol 9:24. https://doi.org/10.3389/fphar.2018.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Oliveira MR, Brasil FB, Fürstenau CR (2018) Evaluation of the mitochondria-related redox and bioenergetics effects of gastrodin in SH-SY5Y cells exposed to hydrogen peroxide. J Mol Neurosci 64:242–251. https://doi.org/10.1007/s12031-018-1027-0

    Article  CAS  PubMed  Google Scholar 

  59. Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48:623–640. https://doi.org/10.3109/10715762.2014.899694

    Article  CAS  PubMed  Google Scholar 

  60. Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  CAS  PubMed  Google Scholar 

  61. Morán JM, Ortiz-Ortiz MA, Ruiz-Mesa LM, Fuentes JM (2010) Nitric oxide in paraquat-mediated toxicity: a review. J Biochem Mol Toxicol 24:402–409. https://doi.org/10.1002/jbt.20348

    Article  CAS  PubMed  Google Scholar 

  62. Robb EL, Gawel JM, Aksentijević D, Cochemé HM, Stewart TS, Shchepinova MM, Qiang H, Prime TA et al (2015) Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic Biol Med 89:883–894. https://doi.org/10.1016/j.freeradbiomed.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  63. de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. https://doi.org/10.1016/j.tiv.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  64. de Oliveira MR, Schuck PF, Bosco SMD (2017) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in Paraquat-treated human neuroblastoma SH-SY5Y cells. Mol Neurobiol 54:4597–4608. https://doi.org/10.1007/s12035-016-0009-x

    Article  CAS  PubMed  Google Scholar 

  65. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  66. de Oliveira MR, Peres A, Ferreira GC (2017) Pinocembrin attenuates mitochondrial dysfunction in human neuroblastoma SH-SY5Y cells exposed to methylglyoxal: role for the Erk1/2-Nrf2 signaling pathway. Neurochem Res 42:1057–1072. https://doi.org/10.1007/s11064-016-2140-5

    Article  CAS  PubMed  Google Scholar 

  67. de Oliveira MR, Andrade CMB, Fürstenau CR (2018) Naringenin exerts anti-inflammatory effects in Paraquat-treated SH-SY5Y cells through a mechanism associated with the Nrf2/HO-1 axis. Neurochem Res 43:894–903. https://doi.org/10.1007/s11064-018-2495-x

    Article  CAS  PubMed  Google Scholar 

  68. de Oliveira MR, de Souza ICC, Fürstenau CR (2018) Carnosic acid induces anti-inflammatory effects in Paraquat-treated SH-SY5Y cells through a mechanism involving a crosstalk between the Nrf2/HO-1 axis and NF-κB. Mol Neurobiol 55:890–897. https://doi.org/10.1007/s12035-017-0389-6

    Article  CAS  PubMed  Google Scholar 

  69. Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L et al (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34:227–234. https://doi.org/10.1007/s10571-013-0006-9

    Article  CAS  PubMed  Google Scholar 

  70. Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  CAS  PubMed  Google Scholar 

  71. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  72. Quesada A, Ogi J, Schultz J, Handforth A (2011) C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase Cϵ/Nrf2 pathway. J Neurosci Res 89:394–405. https://doi.org/10.1002/jnr.22543

    Article  CAS  PubMed  Google Scholar 

  73. Jin X, Liu Q, Jia L, Li M, Wang X (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 35:323–333. https://doi.org/10.1007/s10571-014-0128-8

    Article  CAS  PubMed  Google Scholar 

  74. Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88. https://doi.org/10.1016/j.neuint.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  75. Wang XL, Xing GH, Hong B, Li XM, Zou Y, Zhang XJ, Dong MX (2014) Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson's disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 114:77–85. https://doi.org/10.1016/j.lfs.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  76. Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T et al (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res 40:661–673. https://doi.org/10.1007/s11064-015-1513-5

    Article  CAS  PubMed  Google Scholar 

  77. Qu LL, Yu B, Li Z, Jiang WX, Jiang JD, Kong WJ (2016) Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother Res 30:402–411. https://doi.org/10.1002/ptr.5541

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Z, Zhou J, Song D, Sun Y, Liao C, Jiang X (2017) Gastrodin protects against LPS-induced acute lung injury by activating Nrf2 signaling pathway. Oncotarget 8:32147–32156. https://doi.org/10.18632/oncotarget.16740

    Article  PubMed  PubMed Central  Google Scholar 

  79. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116. https://doi.org/10.1016/j.mito.2016.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol 9:119–123

    Article  CAS  PubMed  Google Scholar 

  81. Elbaz A, Tranchant C (2007) Epidemiologic studies of environmental exposures in Parkinson’s disease. J Neurol Sci 262:37–44

    Article  PubMed  Google Scholar 

  82. Munoz-Sanjuan I, Bates GP (2011) The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invest 121:476–483. https://doi.org/10.1172/JCI45364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schulz JB, Gerlach M, Gille G, Kuhn W, Müngersdorf M, Riederer P, Südmeyer M, Ludolph A (2011) Basic science in Parkinson’s disease: its impact on clinical practice. J Neurol 258:S299–S306. https://doi.org/10.1007/s00415-011-6040-y

    Article  PubMed  Google Scholar 

  84. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R (2018) VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res 131:87–101. https://doi.org/10.1016/j.phrs.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  85. Kourti M, Jiang WG, Cai J (2017) Aspects of carbon monoxide in form of CO-releasing molecules used in cancer treatment: more light on the way. Oxidative Med Cell Longev 2017:9326454. https://doi.org/10.1155/2017/9326454

    Article  CAS  Google Scholar 

  86. Magierowska K, Brzozowski T, Magierowski M (2018) Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res 129:56–64. https://doi.org/10.1016/j.phrs.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  87. Battino M, Giampieri F, Pistollato F, Sureda A, de Oliveira MR, Pittalà V, Fallarino F, Nabavi SF et al (2018) Nrf2 as regulator of innate immunity: a molecular Swiss army knife! Biotechnol Adv 36:358–370. https://doi.org/10.1016/j.biotechadv.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  88. de Oliveira MR, Brasil FB, Fürstenau CR (2018) Sulforaphane attenuated the pro-inflammatory state induced by hydrogen peroxide in SH-SY5Y cells through the Nrf2/HO-1 signaling pathway. Neurotox Res (IN PRESS) https://doi.org/10.1007/s12640-018-9881-7

  89. Scalbert A, Morand C, Manach C, Rémésy C (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–282

    Article  CAS  PubMed  Google Scholar 

  90. Angelino D, Cossu M, Marti A, Zanoletti M, Chiavaroli L, Brighenti F, Del Rio D, Martini D (2017) Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food Funct 8:2368–2393. https://doi.org/10.1039/c7fo00574a

    Article  CAS  PubMed  Google Scholar 

  91. Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL (2017) Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 174:1209–1225. https://doi.org/10.1111/bph.13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2:761–770. https://doi.org/10.1242/bio.20134853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT (2014) Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457:415–424. https://doi.org/10.1042/BJ20130863

    Article  CAS  PubMed  Google Scholar 

  94. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218. https://doi.org/10.1016/j.tibs.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  95. Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq (Universal 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

The effects of gastrodin on the levels of nuclear Nrf2 (A) and total heme oxygenase-1 (HO-1) (B) in SH-SY5Y cells. The cells were exposed to gastrodin at 25 μM for 0–24 h, depending on the parameter analyzed. Data are shown as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, * p < 0.05 different from the control group. (PDF 83 kb)

Figure S2

The effect of Nrf2 silencing by siRNA (48 h) on the levels of heme oxygenase-1 (HO-1) in gastrodin-treated SH-SY5Y cells. The cells were exposed to gastrodin at 25 μM for 24 h. Data are shown as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different from the control group, ** p < 0.05 different from the gastrodin-treated cells transfected with negative control (NC) siRNA.. (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R., de Bittencourt Brasil, F. & Fürstenau, C.R. Inhibition of the Nrf2/HO-1 Axis Suppresses the Mitochondria-Related Protection Promoted by Gastrodin in Human Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol 56, 2174–2184 (2019). https://doi.org/10.1007/s12035-018-1222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1222-6

Keywords

Navigation