Skip to main content

Advertisement

Log in

DNA Methylation: a New Player in Multiple Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a neurological and chronic inflammatory disease that is mediated by demyelination and axonal degeneration in the central nervous system (CNS). Studies have shown that immune system components such as CD4+, CD8+, CD44+ T cells, B lymphatic cells, and inflammatory cytokines play a critical role in inflammatory processes and myelin damage associated with MS. Nevertheless, the pathogenesis of MS remains poorly defined. DNA methylation, a significant epigenetic modification, is reported to be extensively involved in MS pathogenesis through the regulation of gene expression. This review focuses on DNA methylation involved in MS pathogenesis. Evidence showed the hypermethylation of human leukocyte antigen-DRB1 (HLA-DRB1) in CD4+ T cells, the genome-wide DNA methylation in CD8+ T cells, the hypermethylation of interleukin-4 (IL-4)/forkhead winged helix transcription factor 3 (Foxp3), and the demethylation of interferon-γ (IFN-γ)/IL-17a in CD44+ encephalitogenic T cells. Studies also showed the hypermethylation of SH2-containing protein tyrosine phosphatase-1 (SHP-1) in peripheral blood mononuclear cells (PBMCs) and methylated changes of genes regulating oligodendrocyte and neuronal function in normal-appearing white matter. Clarifying the mechanism of aberrant methylation on MS may explain part of the pathology and will lead to the development of a new therapeutic target for the treatment of MS in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosine

APC:

Antigen-presenting cell

BBB:

Blood-brain barrier

BCL2L2:

Bcl-2-like protein 2

CIS:

Clinically isolated syndrome

CNS:

Central nervous system

Co-rep:

Co-repressors

CTSZ:

Cathepsin z

DNHD1:

Dynein heavy chain domain 1

Dnmts:

DNA methyltransferases

EAE:

Experimental autoimmune encephalomyelitis

EBV:

Epstein-Barr virus

Foxp3:

Forkhead winged helix transcription factor-3

HAGHL:

Hydroxyacylglutathione hydrolase-like

HDACs:

Histone deacetylases

HERV-W:

Human endogenous retrovirus W

HLA-DRB1:

Human leukocyte antigen-DRB1

Hlx:

H2.0-like homeobox

IFN-γ:

Interferon-γ

IL:

Interleukin

LGMN:

Legumain

MBDs:

Methyl-binding domain proteins

MBP:

Myelin basic protein

MeCP2:

Methyl-CpG-binding protein 2

MHC:

Major histocompatibility complex

MHC2TA:

MHC class II transactivator

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

NAWM:

Normal-appearing white matter

NDRG1:

N-myc downstream regulated gene 1

OPCs:

Oligodendrocyte precursors

PAD2/4:

Peptidyl arginine deiminase 2/4

PBMCs:

Peripheral blood mononuclear cells

PPMS:

Primary-progressive multiple sclerosis

RIS:

Radiologically isolated syndrome

RPS2:

Ribosomal protein S2

RRMS:

Relapsing-remitting multiple sclerosis

SHP-1:

SH2-containing protein tyrosine phosphatase-1

TCF-1:

T-cell factor-1

TNFα:

Tumor necrosis factor α

References

  1. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302. doi:10.1146/annurev.med.53.082901.103909

    Article  CAS  PubMed  Google Scholar 

  2. Feinstein A, Freeman J, Lo AC (2015) Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. Lancet Neurol 14(2):194–207. doi:10.1016/S1474-4422(14)70231-5

    Article  PubMed  Google Scholar 

  3. Katz Sand I (2015) Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol 28(3):193–205. doi:10.1097/WCO.0000000000000206

    Article  PubMed  Google Scholar 

  4. Korn T, Mitsdoerffer M, Kuchroo VK (2010) Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis. Results Probl Cell Differ 51:43–74. doi:10.1007/400_2008_17

    Article  CAS  PubMed  Google Scholar 

  5. Batoulis H, Addicks K, Kuerten S (2010) Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat 192(4):179–193. doi:10.1016/j.aanat.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Namaka M, Turcotte D, Leong C, Grossberndt A, Klassen D (2008) Multiple sclerosis: etiology and treatment strategies. Consult Pharm 23(11):886–896

    Article  PubMed  Google Scholar 

  7. Merrill JE (1992) Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother (1991) 12(3):167–170

    Article  CAS  Google Scholar 

  8. Codarri L, Fontana A, Becher B (2010) Cytokine networks in multiple sclerosis: lost in translation. Curr Opin Neurol 23(3):205–211. doi:10.1097/WCO.0b013e3283391feb

    Article  CAS  PubMed  Google Scholar 

  9. Comi C, Leone M, Bonissoni S, DeFranco S, Bottarel F, Mezzatesta C, Chiocchetti A, Perla F et al (2000) Defective T cell fas function in patients with multiple sclerosis. Neurology 55(7):921–927

    Article  CAS  PubMed  Google Scholar 

  10. Segal BM, Cross AH (2000) Fas(t) track to apoptosis in MS: TNF receptors may suppress or potentiate CNS demyelination. Neurology 55(7):906–907

    Article  CAS  PubMed  Google Scholar 

  11. Frisullo G, Nociti V, Iorio R, Patanella AK, Marti A, Caggiula M, Mirabella M, Tonali PA et al (2008) IL17 and IFNgamma production by peripheral blood mononuclear cells from clinically isolated syndrome to secondary progressive multiple sclerosis. Cytokine 44(1):22–25. doi:10.1016/j.cyto.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  12. Trenova AG, Manova MG, Kostadinova II, Murdjeva MA, Hristova DR, Vasileva TV, Zahariev ZI (2011) Clinical and laboratory study of pro-inflammatory and antiinflammatory cytokines in women with multiple sclerosis. Folia Med (Plovdiv) 53(2):29–35

    Google Scholar 

  13. Parnell GP, Gatt PN, Krupa M, Nickles D, McKay FC, Schibeci SD, Batten M, Baranzini S et al (2014) The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clin Immunol 151(1):16–24. doi:10.1016/j.clim.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Drulovic J, Savic E, Pekmezovic T, Mesaros S, Stojsavljevic N, Dujmovic-Basuroski I, Kostic J, Vasic V et al (2009) Expression of Th1 and Th17 cytokines and transcription factors in multiple sclerosis patients: does baseline T-bet mRNA predict the response to interferon-beta treatment? J Neuroimmunol 215(1-2):90–95. doi:10.1016/j.jneuroim.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  15. Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruine AP, Baldwin HS, van Engeland M (2010) The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 24(11):4153–4166. doi:10.1096/fj.09-151464

    Article  CAS  PubMed  Google Scholar 

  16. Huynh JL, Garg P, Thin TH, Yoo S, Dutta R, Trapp BD, Haroutunian V, Zhu J et al (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17(1):121–130. doi:10.1038/nn.3588

    Article  CAS  PubMed  Google Scholar 

  17. van den Elsen PJ, van Eggermond MC, Puentes F, van der Valk P, Baker D, Amor S (2014) The epigenetics of multiple sclerosis and other related disorders. Mult Scler Relat Disord 3(2):163–175. doi:10.1016/j.msard.2013.08.007

    Article  PubMed  Google Scholar 

  18. Halili MA, Andrews MR, Sweet MJ, Fairlie DP (2009) Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 9(3):309–319

    Article  CAS  PubMed  Google Scholar 

  19. Koch MW, Metz LM, Kovalchuk O (2013) Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol Med 19(1):23–30. doi:10.1016/j.molmed.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  20. Koturbash I, Beland FA, Pogribny IP (2011) Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 21(4):289–297. doi:10.3109/15376516.2011.557881

    Article  CAS  PubMed  Google Scholar 

  21. Kucukali CI, Kurtuncu M, Coban A, Cebi M, Tuzun E (2015) Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med 17(2):83–96. doi:10.1007/s12017-014-8298-6

    Article  CAS  PubMed  Google Scholar 

  22. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W et al (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679. doi:10.1038/nature11337

    Article  CAS  PubMed  Google Scholar 

  23. Miceli MC, Parnes JR (1991) The roles of CD4 and CD8 in T cell activation. Semin Immunol 3(3):133–141

    CAS  PubMed  Google Scholar 

  24. KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M (2015) Transcriptional regulation of brain-derived neurotrophic factor (BDNF) by methyl CpG binding protein 2 (MeCP2): a novel mechanism for re-myelination and/or myelin repair involved in the treatment of multiple sclerosis (MS). Mol Neurobiol. doi:10.1007/s12035-014-9074-1

    PubMed  Google Scholar 

  25. Sinha S, Itani FR, Karandikar NJ (2014) Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res 59(1-3):254–265. doi:10.1007/s12026-014-8529-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chitnis T (2007) The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int Rev Neurobiol 79:43–72. doi:10.1016/S0074-7742(07)79003-7

    Article  CAS  PubMed  Google Scholar 

  27. Salou M, Garcia A, Michel L, Gainche-Salmon A, Loussouarn D, Nicol B, Guillot F, Hulin P et al (2015) Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann Clin Transl Neurol 2(6):609–622. doi:10.1002/acn3.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319

    Article  CAS  PubMed  Google Scholar 

  29. Guan H, Nagarkatti PS, Nagarkatti M (2011) CD44 reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 186(12):6955–6964. doi:10.4049/jimmunol.1004043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M et al (2008) IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 15(7):504–515. doi:10.1038/gt.2008.10

    Article  CAS  PubMed  Google Scholar 

  31. Ammar N, Cournu-Rebeix I, Genin E, Noe E, Mrejen S, Clanet M, Edan G, Lyon-Caen O et al (2004) Study of the genetic interaction of genes encoding IL4, IL3 and their receptors in multiple sclerosis. Eur J Neurol 11:300–300

    Google Scholar 

  32. Kantarci OH, Schaefer-Klein JL, Hebrink DD, Achenbach SJ, Atkinson EJ, McMurray CT, Weinshenker BG (2003) A population-based study of IL4 polymorphisms in multiple sclerosis. J Neuroimmunol 137(1–2):134–139. doi:10.1016/S0165-5728(03)00046-8

    Article  CAS  PubMed  Google Scholar 

  33. Kouchaki E, Salehi M, Reza Sharif M, Nikoueinejad H, Akbari H (2014) Numerical status of CD4(+)CD25(+)FoxP3(+) and CD8(+)CD28(−) regulatory T cells in multiple sclerosis. Iran J Basic Med Sci 17(4):250–255

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sellebjerg F, Krakauer M, Khademi M, Olsson T, Sorensen PS (2012) FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4(+) CD25(high) T cells in multiple sclerosis. Clin Exp Immunol 170(2):149–155. doi:10.1111/j.1365-2249.2012.04654.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen M, Chen G, Deng S, Liu X, Hutton GJ, Hong J (2012) IFN-beta induces the proliferation of CD4+CD25+Foxp3+ regulatory T cells through upregulation of GITRL on dendritic cells in the treatment of multiple sclerosis. J Neuroimmunol 242(1–2):39–46. doi:10.1016/j.jneuroim.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  36. Wood DD, Ackerley CA, Brand B, Zhang L, Raijmakers R, Mastronardi FG, Moscarello MA (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Investig 88(4):354–364. doi:10.1038/labinvest.3700748

    Article  CAS  PubMed  Google Scholar 

  37. Beck H, Schwarz G, Schroter CJ, Deeg M, Baier D, Stevanovic S, Weber E, Driessen C et al (2001) Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur J Immunol 31(12):3726–3736. doi:10.1002/1521-4141(200112)31:12<3726::AID-IMMU3726>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  38. Shin J, Bourdon C, Bernard M, Wilson MD, Reischl E, Waldenberger M, Ruggeri B, Schumann G et al (2015) Layered genetic control of DNA methylation and gene expression: a locus of multiple sclerosis in healthy individuals. Hum Mol Genet 24(20):5733–5745. doi:10.1093/hmg/ddv294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu K, Liu Y, Lau JL, Min J (2015) Epigenetic targets and drug discovery. Part 2: histone demethylation and DNA methylation. Pharmacol Ther 151:121–140. doi:10.1016/j.pharmthera.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  40. Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 282(1–2):239–244

    Article  CAS  PubMed  Google Scholar 

  41. Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39(12):4984–5002. doi:10.1093/nar/gkr116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823. doi:10.1074/jbc.M400181200

    Article  CAS  PubMed  Google Scholar 

  43. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191. doi:10.1038/561

    Article  CAS  PubMed  Google Scholar 

  44. MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88(3):170–183

    Article  CAS  PubMed  Google Scholar 

  45. Gigek CO, Chen ES, Smith MA (2015) Methyl-Cpg-binding protein (MBD) family: epigenomic read-outs functions and roles in tumorigenesis and psychiatric diseases. J Cell Biochem. doi:10.1002/jcb.25281

    Google Scholar 

  46. Ruddock-D’Cruz NT, Xue J, Wilson KJ, Heffernan C, Prashadkumar S, Cooney MA, Sanchez-Partida LG, French AJ et al (2008) Dynamic changes in the localization of five members of the methyl binding domain (MBD) gene family during murine and bovine preimplantation embryo development. Mol Reprod Dev 75(1):48–59. doi:10.1002/mrd.20712

    Article  PubMed  CAS  Google Scholar 

  47. Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VR, Rastegar M (2014) Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One 9(3):e90645. doi:10.1371/journal.pone.0090645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dajun D (2014) DNA methylation and demethylation: current status and future perspective. Yi Chuan 36(5):403–410

    PubMed  Google Scholar 

  49. Zhong J, Yu Q, Yang P, Rao X, He L, Fang J, Tu Y, Zhang Z et al (2014) MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. J Autoimmun 53:95–104. doi:10.1016/j.jaut.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  50. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  51. Mullen AC, Hutchins AS, High FA, Lee HW, Sykes KJ, Chodosh LA, Reiner SL (2002) Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3(7):652–658. doi:10.1038/ni807

    CAS  PubMed  Google Scholar 

  52. Calabrese R, Valentini E, Ciccarone F, Guastafierro T, Bacalini MG, Ricigliano VA, Zampieri M, Annibali V et al (2014) TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells. Biochim Biophys Acta 1842(7):1130–1136. doi:10.1016/j.bbadis.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  53. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9(3):310–318. doi:10.1038/ni1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Girgrah N, Letarte M, Becker LE, Cruz TF, Theriault E, Moscarello MA (1991) Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J Neuropathol Exp Neurol 50(6):779–792

    Article  CAS  PubMed  Google Scholar 

  55. Gray PW, Goeddel DV (1982) Structure of the human immune interferon gene. Nature 298(5877):859–863

    Article  CAS  PubMed  Google Scholar 

  56. Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA (1997) The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 337(24):1720–1725. doi:10.1056/NEJM199712113372403

    Article  CAS  PubMed  Google Scholar 

  57. Chao MJ, Barnardo MC, Lincoln MR, Ramagopalan SV, Herrera BM, Dyment DA, Montpetit A, Sadovnick AD et al (2008) HLA class I alleles tag HLA-DRB1*1501 haplotypes for differential risk in multiple sclerosis susceptibility. Proc Natl Acad Sci U S A 105(35):13069–13074. doi:10.1073/pnas.0801042105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Graves M, Benton M, Lea R, Boyle M, Tajouri L, Macartney-Coxson D, Scott R, Lechner-Scott J (2013) Methylation differences at the HLA-DRB1 locus in CD4+ T-cells are associated with multiple sclerosis. Mult Scler 20(8):1033–1041. doi:10.1177/1352458513516529

    Article  PubMed  CAS  Google Scholar 

  59. Maltby VE, Graves MC, Lea RA, Benton MC, Sanders KA, Tajouri L, Scott RJ, Lechner-Scott J (2015) Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin Epigenetics 7:118. doi:10.1186/s13148-015-0152-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shintani T, Ihara M, Tani S, Sakuraba J, Sakuta H, Noda M (2009) APC2 plays an essential role in axonal projections through the regulation of microtubule stability. J Neurosci 29(37):11628–11640. doi:10.1523/JNEUROSCI.2394-09.2009

    Article  CAS  PubMed  Google Scholar 

  61. Silvanovich A, Li MG, Serr M, Mische S, Hays TS (2003) The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell 14(4):1355–1365. doi:10.1091/mbc.E02-10-0675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Itoh T, Itoh A, Pleasure D (2003) Bcl-2-related protein family gene expression during oligodendroglial differentiation. J Neurochem 85(6):1500–1512

    Article  CAS  PubMed  Google Scholar 

  63. Principato GB, Rosi G, Talesa V, Bocchini V, Giovannini E (1984) Purification of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from calf brain. Biochem Int 9(3):351–359

    CAS  PubMed  Google Scholar 

  64. Pungercar J, Ivanovski G (2000) Identification and molecular cloning of cathepsin P, a novel human putative cysteine protease of the papain family. Pflugers Arch 439(3 Suppl):R116–118

    Article  CAS  Google Scholar 

  65. Obermajer N, Doljak B, Jamnik P, Fonovic UP, Kos J (2009) Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 41(8-9):1685–1696. doi:10.1016/j.biocel.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  66. Guo Q, Bedford MT, Fast W (2011) Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. Mol Biosyst 7(7):2286–2295. doi:10.1039/c1mb05089c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thompson PR, Fast W (2006) Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem Biol 1(7):433–441. doi:10.1021/cb6002306

    Article  CAS  PubMed  Google Scholar 

  68. Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85(9):2006–2016. doi:10.1002/jnr.21329

    Article  CAS  PubMed  Google Scholar 

  69. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR (1998) Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem 273(51):33893–33896

    Article  CAS  PubMed  Google Scholar 

  70. Fan LC, Shiau CW, Tai WT, Hung MH, Chu PY, Hsieh FS, Lin H, Yu HC et al (2015) SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 34(41):5252–5263. doi:10.1038/onc.2014.445

    Article  CAS  PubMed  Google Scholar 

  71. Gruber RC, LaRocca D, Minchenberg SB, Christophi GP, Hudson CA, Ray AK, Shafit-Zagardo B, Massa PT (2015) The control of reactive oxygen species production by SHP-1 in oligodendrocytes. Glia 63(10):1753–1771. doi:10.1002/glia.22842

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT (2012) Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 246(1-2):51–57. doi:10.1016/j.jneuroim.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramagopalan SV, Dyment DA, Morrison KM, Herrera BM, DeLuca GC, Lincoln MR, Orton SM, Handunnetthi L et al (2008) Methylation of class II transactivator gene promoter IV is not associated with susceptibility to multiple sclerosis. BMC Med Genet 9(1):63. doi:10.1186/1471-2350-9-63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Williamson DM, Marrie RA, Ashley-Koch A, Satten GA (2013) Interaction of HLA-DRB1*1501 and TNF-alpha in a population-based case-control study of multiple sclerosis. Immunol Infect Dis 1(1):10–17. doi:10.13189/iid.2013.010102

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Quandt JA, Huh J, Baig M, Yao K, Ito N, Bryant M, Kawamura K, Pinilla C et al (2012) Myelin basic protein-specific TCR/HLA-DRB5*01:01 transgenic mice support the etiologic role of DRB5*01:01 in multiple sclerosis. J Immunol 189(6):2897–2908. doi:10.4049/jimmunol.1103087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Handel AE, De Luca GC, Morahan J, Handunnetthi L, Sadovnick AD, Ebers GC, Ramagopalan SV (2010) No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1*15 or HLA-DRB5. J Neuroimmunol 223(1-2):120–123. doi:10.1016/j.jneuroim.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  77. Le Bras S, Geha RS (2006) IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest 116(6):1473–1475. doi:10.1172/JCI28880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Scharer CD, Barwick BG, Youngblood BA, Ahmed R, Boss JM (2013) Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol 191(6):3419–3429. doi:10.4049/jimmunol.1301395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. doi:10.1016/S0065-2776(07)96002-2

    Article  CAS  PubMed  Google Scholar 

  80. Reinhardt RL, Liang HE, Bao K, Price AE, Mohrs M, Kelly BL, Locksley RM (2015) A novel model for IFN-gamma-mediated autoinflammatory syndromes. J Immunol 194(5):2358–2368. doi:10.4049/jimmunol.1401992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morris AC, Spangler WE, Boss JM (2000) Methylation of class II trans-activator promoter IV: a novel mechanism of MHC class II gene control. J Immunol 164(8):4143–4149

    Article  CAS  PubMed  Google Scholar 

  82. Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K, Bouton O, Mallet F (2010) Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res 38(7):2229–2246. doi:10.1093/nar/gkp1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, Sotgiu S, Bonetti B et al (2007) Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not human herpesvirus 6. J Gen Virol 88(Pt 1):264–274. doi:10.1099/vir.0.81890-0

    Article  CAS  PubMed  Google Scholar 

  84. Kugyelka R, Kohl Z, Olasz K, Mikecz K, Rauch TA, Glant TT, Boldizsar F (2016) Enigma of IL-17 and Th17 cells in rheumatoid arthritis and in autoimmune animal models of arthritis. Mediators Inflamm 2016:6145810. doi:10.1155/2016/6145810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ma J, Wang R, Fang X, Ding Y, Sun Z (2011) Critical role of TCF-1 in repression of the IL-17 gene. PLoS One 6(9):e24768. doi:10.1371/journal.pone.0024768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wei L, Wasilewski E, Chakka SK, Bello AM, Moscarello MA, Kotra LP (2013) Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. J Med Chem 56(4):1715–1722. doi:10.1021/jm301755q

    Article  CAS  PubMed  Google Scholar 

  87. Fogdell A, Hillert J, Sachs C, Olerup O (1995) The multiple sclerosis- and narcolepsy-associated HLA class II haplotype includes the DRB5*0101 allele. Tissue Antigens 46(4):333–336

    Article  CAS  PubMed  Google Scholar 

  88. Prat E, Tomaru U, Sabater L, Park DM, Granger R, Kruse N, Ohayon JM, Bettinotti MP et al (2005) HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype. J Neuroimmunol 167(1-2):108–119. doi:10.1016/j.jneuroim.2005.04.027

    Article  CAS  PubMed  Google Scholar 

  89. Johnson AJ, Suidan GL, McDole J, Pirko I (2007) The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? Int Rev Neurobiol 79:73–97. doi:10.1016/S0074-7742(07)79004-9

    Article  CAS  PubMed  Google Scholar 

  90. Johnson HL, Willenbring RC, Jin F, Manhart WA, LaFrance SJ, Pirko I, Johnson AJ (2014) Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS One 9(10):e111401. doi:10.1371/journal.pone.0111401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ting JP, Trowsdale J (2002) Genetic control of MHC class II expression. Cell 109(Suppl):S21–33

    Article  CAS  PubMed  Google Scholar 

  92. Reith W, LeibundGut-Landmann S, Waldburger JM (2005) Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 5(10):793–806. doi:10.1038/nri1708

    Article  CAS  PubMed  Google Scholar 

  93. Antony JM, Zhu Y, Izad M, Warren KG, Vodjgani M, Mallet F, Power C (2007) Comparative expression of human endogenous retrovirus-W genes in multiple sclerosis. AIDS Res Hum Retrovir 23(10):1251–1256. doi:10.1089/aid.2006.0274

    Article  CAS  PubMed  Google Scholar 

  94. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303. doi:10.1093/brain/awm291

    Article  PubMed  Google Scholar 

  95. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12(5):616–627

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pritzker LB, Joshi S, Harauz G, Moscarello MA (2000) Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry 39(18):5382–5388

    Article  CAS  PubMed  Google Scholar 

  97. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. doi:10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Massilamany C, Gangaplara A, Jia T, Elowsky C, Li Q, Zhou Y, Reddy J (2014) In situ detection of autoreactive CD4 T cells in brain and heart using major histocompatibility complex class II dextramers. J Vis Exp 90:e51679. doi:10.3791/51679

    Google Scholar 

  99. Probstel AK, Sanderson NS, Derfuss T (2015) B cells and autoantibodies in multiple sclerosis. Int J Mol Sci 16(7):16576–16592. doi:10.3390/ijms160716576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McLaughlin KA, Wucherpfennig KW (2008) B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. Adv Immunol 98:121–149. doi:10.1016/S0065-2776(08)00404-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liggett T, Melnikov A, Tilwalli S, Yi Q, Chen H, Replogle C, Feng X, Reder A et al (2010) Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J Neurol Sci 290(1-2):16–21. doi:10.1016/j.jns.2009.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, Saw CL, Cheung KL et al (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J 13(4):606–614. doi:10.1208/s12248-011-9300-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ (2012) Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 23(11):1498–1507. doi:10.1016/j.jnutbio.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  104. Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9(5):575–581. doi:10.1016/j.intimp.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  105. Xie L, Li XK, Takahara S (2011) Curcumin has bright prospects for the treatment of multiple sclerosis. Int Immunopharmacol 11(3):323–330. doi:10.1016/j.intimp.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  106. Kochiadakis GE, Igoumenidis NE, Solomou MC, Parthenakis FI, Christakis-Hampsas MG, Chlouverakis GI, Tsatsakis AM, Vardas PE (1998) Conversion of atrial fibrillation to sinus rhythm using acute intravenous procainamide infusion. Cardiovasc Drugs Ther 12(1):75–81

    Article  CAS  PubMed  Google Scholar 

  107. Bourreli B, Pinaud M, Passuti N, Gunst JP, Drouet JC, Remi JP (1988) Additive effects of dihydralazine during enflurane or isoflurane hypotensive anaesthesia for spinal fusion. Can J Anaesth 35(3):242–248. doi:10.1007/BF03010617

    Article  CAS  PubMed  Google Scholar 

  108. Nebbioso A, Carafa V, Benedetti R, Altucci L (2012) Trials with ‘epigenetic’ drugs: an update. Mol Oncol 6(6):657–682. doi:10.1016/j.molonc.2012.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31100771) and Postdoctoral Foundation of CQ CSTC (2011018). Thanks are extended to Professor Lan Xiao for giving advice on revising this review and to Professor Min Yang and Zhi-fang Li for their help in correcting the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Shu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiao, B. & Chen, XS. DNA Methylation: a New Player in Multiple Sclerosis. Mol Neurobiol 54, 4049–4059 (2017). https://doi.org/10.1007/s12035-016-9966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9966-3

Keywords

Navigation