Skip to main content
Log in

Integrated Carbon Nanostructures for Detection of Neurotransmitters

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Carbon-based materials, such as diamond-like carbon (DLC), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), are inherently interesting for neurotransmitter detection due to their good biocompatibility, low cost and relatively simple synthesis. In this paper, we report on new carbon-hybrid materials, where either CNTs or CNFs are directly grown on top of tetrahedral amorphous carbon (ta-C). We show that these hybrid materials have electrochemical properties that not only combine the best characteristics of the individual “building blocks” but their synergy makes the electrode performance superior compared to conventional carbon based electrodes. By combining ta-C with CNTs, we were able to realize electrode materials that show wide and stable water window, almost reversible electron transfer properties and high sensitivity and selectivity for detecting dopamine in the presence of ascorbic acid. Furthermore, the sensitivity of ta-C + CNF hybrids towards dopamine as well as glutamate has been found excellent paving the road for actual in vivo measurements. The wide and stable water window of these sensors enables detection of other neurotransmitters besides DA as well as capability of withstanding higher potentials without suffering from oxygen and hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wittchen H, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C et al (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679. doi:10.1016/j.euroneuro.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  2. Murray CJL et al (2013) The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. doi:10.1001/jama.2013.13805

    PubMed Central  Google Scholar 

  3. Nguyen-Vu TDB, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J (2006) Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2:89–94. doi:10.1002/smll.200500175

    Article  CAS  PubMed  Google Scholar 

  4. Benabid A. L (2003) Deep brain stimulation for Parkinson’s disease. Current opinion in neurobiology 13:696-706. doi:10.1016/j.conb.2003.11.001

  5. Kaivosoja E, Sainio S, Lyytinen J, Palomäki T, Laurila T, Kim S, Han J, Koskinen J (2014) Carbon thin films as electrode material in neural sensing. Surf Coat Technol. doi:10.1016/j.surfcoat.2014.07.056

    Google Scholar 

  6. Laurila T, Rautiainen A, Sintonen S, Jiang H, Kaivosoja E, Koskinen J (2014) Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post treatments and the use of Ti adhesion layer. Mater Sci Eng C: Mater Biol Appl 34:446–454. doi:10.1016/j.msec.2013.09.035

    Article  CAS  Google Scholar 

  7. Kaivosoja E, Berg E, Rautiainen A, Palomaki T, Koskinen J, Paulasto-Krockel M, Laurila T, (2013) Improving the function of dopamine electrodes with novel carbon materials. Conf Proc IEEE Eng Med Biol Soc. 632–634. doi: 10.1109/EMBC.2013.6609579

  8. Schnuppa R, Kühnholdb R, Temmela G, Burtea E, Ryssel H (1998) Thin carbon films as electrodes for bioelectronic applications. Biosens Bioelectron 13:889–894. doi:10.1016/S0956-5663(98)00057-8

    Article  Google Scholar 

  9. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281. doi:10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  10. Laurila T, Protopopova V, Rhode S, Sainio S, Palomäki T, Moram M, Feliu J, Koskinen J (2014) New electrochemically improved tetrahedral amorphous carbon films for biosensor applications. Diam Relat Mater. doi:10.1016/j.diamond.2014.08.007

    Google Scholar 

  11. Sainio S, Palomäki T, Rhode S, Kauppila M, Pitkänen O, Selkälä T, Toth G, Moram M et al (2015) Carbon nanotube (CNT) forest grown on diamond-like carbon (DLC) thin films significantly improves electrochemical sensitivity and selectivity towards dopamine. Sensors Actuators B 211:177-186 doi:10.1016/j.snb.2015.01.059

  12. Pitkänen O, Halonen N, Leino A-R, Mäklin J, Dombovari A, Lin JH, Toth G, Kordas K (2013) Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top Catal 56:522–526. doi:10.1007/s11244-013-0047-9

    Article  Google Scholar 

  13. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sensors Actuators B 133:462–466. doi:10.1016/j.snb.2008.03.015

    Article  CAS  Google Scholar 

  14. Keeley GP, Lyons MEG (2009) The effects of thin layer diffusion at glassy carbon electrodes modified with porous films of single-walled carbon nanotubes. Int J Electrochem Sci 4:794–809

    CAS  Google Scholar 

  15. Rand E, Periyakaruppan A, Tanaka Z, Zhang DA, Marsh MP, Andrews RJ, Lee KH, Chen B et al (2012) A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens Bioelectron 42:434–438. doi:10.1016/j.bios.2012.10.080

    Article  PubMed Central  PubMed  Google Scholar 

  16. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin‑I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85:3858–3863. doi:10.1021/ac302801z

    Article  CAS  PubMed  Google Scholar 

  17. Helveg S, López-Cartes C, Sehested J, Hansen P. L., Clausen B. S, Rostrup-Nielsen J. R, Abild-Pedersen F, Nørskov J. K (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426-429. doi:10.1038/nature02278

  18. Taira T, Paalasmaa P, Voipio J, Kaila K (1995) Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. J Neurophysiol 74:643–649

    CAS  PubMed  Google Scholar 

  19. Voipio J, Paalasmaa P, Taira T, Kaila K (1995) Pharmacological characterization of extracellular pH transients evoked by selective synaptic and exogenous activation of AMPA, NMDA, and GABAA receptors in the rat hippocampal slice. J Neurophysiol 74:633–642

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Emilia Kaivosoja (Aalto University, Espoo, Finland) and Olli Pitkänen (University of Oulu, Finalnd) are acknowledged for their assistance with carbon nanotube growth and glutamate measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Sainio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainio, S., Palomäki, T., Tujunen, N. et al. Integrated Carbon Nanostructures for Detection of Neurotransmitters. Mol Neurobiol 52, 859–866 (2015). https://doi.org/10.1007/s12035-015-9233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9233-z

Keywords

Navigation