Skip to main content

Advertisement

Log in

Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Battiston B, Papalia I, Tos P, Geuna S (2009) Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol 87:1–7. doi:10.1016/S0074-7742(09)87001-3

    PubMed  Google Scholar 

  2. NIH Publication No. 04-4853 (Peripheral Neuropathy Fact Sheet)

  3. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309. doi:10.1038/nrn1078

    CAS  PubMed  Google Scholar 

  4. Kashiba H, Noguchi K, Ueda Y, Senba E (1995) Coexpression of trk family members and low-affinity neurotrophin receptors in rat dorsal root ganglion neurons. Brain Res Mol Brain Res 30:158–164

    CAS  PubMed  Google Scholar 

  5. Wright DE, Snider WD (1995) Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J Comp Neurol 351:329–338

    CAS  PubMed  Google Scholar 

  6. Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622. doi:10.1093/emboj/18.3.616

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90:7859–7863

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hempstead BL, Martin-Zanca D, Kaplan DR et al (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350:678–683. doi:10.1038/350678a0

    CAS  PubMed  Google Scholar 

  9. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564. doi:10.1098/rstb.2006.1894

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Nykjaer A, Lee R, Teng KK et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848. doi:10.1038/nature02319

    CAS  PubMed  Google Scholar 

  11. Jansen P, Giehl K, Nyengaard JR et al (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10:1449–1457. doi:10.1038/nn2000

    CAS  PubMed  Google Scholar 

  12. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science (New York, NY) 294:1945–1948. doi:10.1126/science.1065057

    CAS  Google Scholar 

  13. Masoudi R, Ioannou MS, Coughlin MD et al (2009) Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J Biol Chem 284:18424–18433. doi:10.1074/jbc.M109.007104

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Teng HK, Teng KK, Lee R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463. doi:10.1523/JNEUROSCI.5123-04.2005

    CAS  PubMed  Google Scholar 

  15. Nikoletopoulou V, Lickert H, Frade JM et al (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467:59–63. doi:10.1038/nature09336

    CAS  PubMed  Google Scholar 

  16. Martini FH (2005) Anatomy and physiology, 1st ed. Pearson Education, Inc

  17. Richner M, Bjerrum OJ, Nykjaer A, Vaegter CB (2011) The Spared Nerve Injury (SNI) model of induced mechanical allodynia in mice. J Vis Exp. doi:10.3791/3092

    PubMed Central  PubMed  Google Scholar 

  18. Rigaud M, Gemes G, Barabas M-E et al (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201. doi:10.1016/j.pain.2008.01.016

    PubMed Central  PubMed  Google Scholar 

  19. Amir R, Devor M (2003) Electrical excitability of the soma of sensory neurons is required for spike invasion of the soma, but not for through-conduction. Biophys J 84:2181–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Huang L-YM, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 1–11. doi: 10.1002/glia.22541

  21. Pannese E (2010) The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biol 6:3–10. doi:10.1017/S1740925X10000037

    PubMed  Google Scholar 

  22. Pannese E, Ledda M, Arcidiacono G, Rigamonti L (1991) Clusters of nerve cell bodies enclosed within a common connective tissue envelope in the spinal ganglia of the lizard and rat. Cell Tissue Res 264:209–214

    CAS  PubMed  Google Scholar 

  23. Pannese E (1981) The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol 65:1–111

    CAS  PubMed  Google Scholar 

  24. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476. doi:10.1016/j.brainresrev.2004.09.001

    CAS  PubMed  Google Scholar 

  25. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682. doi:10.1038/nrn1746

    CAS  PubMed  Google Scholar 

  26. Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore, MD

    Google Scholar 

  27. Manzano GM, Giuliano LMP, Nóbrega JAM (2008) A brief historical note on the classification of nerve fibers. Arq Neuropsiquiatr 66:117–119

    PubMed  Google Scholar 

  28. Lewin GR, Moshourab R (2004) Mechanosensation and pain. J Neurobiol 61:30–44. doi:10.1002/neu.20078

    PubMed  Google Scholar 

  29. Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35:373–381. doi:10.1016/j.tins.2012.03.006

    CAS  PubMed  Google Scholar 

  30. Honma Y, Kawano M, Kohsaka S, Ogawa M (2010) Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development (Cambridge, England) 137:2319–2328. doi:10.1242/dev.046995

    CAS  Google Scholar 

  31. Flemming W (1882) Flemming: Vom Bau der Spinalganglienzellen. Festschrift für Henle

  32. Daae H (1887) Zur Kenntniss der Spinalganglienzellen beim Säugethier. Arch Mikrosk Anat 31:223–235. doi:10.1007/BF02955708

    Google Scholar 

  33. Müller E (1891) Untersuchungen über den Bau der Spinal-ganglien. Nordiskt Medicinskt Arkiv 23:1–55. doi:10.1111/j.0954-6820.1891.tb00764.x

    Google Scholar 

  34. Lawson SN (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers and size. J Neurocytol 8:275–294

    CAS  PubMed  Google Scholar 

  35. Hossack J, Wyburn GM (1954) XVI.—Electron Microscopic Studies of Spinal Ganglion Cells. Proc R Soc Edinb B Biol 65:239–250. doi:10.1017/S0080455X00012133

    Google Scholar 

  36. Andres KH (1961) Untersuchungen über den Feinbau von Spinalganglien. Cell Tissue Res 55:1–48. doi:10.1007/BF00319327

    CAS  Google Scholar 

  37. Lawson SN, Harper AA, Harper EI et al (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurones. J Comp Neurol 228:263–272. doi:10.1002/cne.902280211

    CAS  PubMed  Google Scholar 

  38. Averill S, McMahon SB, Clary DO et al (1995) Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 7:1484–1494. doi:10.1111/j.1460-9568.1995.tb01143.x

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Priestley JV, Michael GJ, Averill S et al (2002) Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can J Physiol Pharmacol 80:495–505. doi:10.1139/y02-034

    CAS  PubMed  Google Scholar 

  40. Scott SA (1992) Sensory neurons: diversity, development, and plasticity. Oxford University Press

  41. Price J (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci 5:2051–2059

    CAS  PubMed  Google Scholar 

  42. Harper AA, Lawson SN (1985) Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol Lond 359:31–46

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Karchewski LA, Kim FA, Johnston J et al (1999) Anatomical evidence supporting the potential for modulation by multiple neurotrophins in the majority of adult lumbar sensory neurons. J Comp Neurol 413:327–341

    CAS  PubMed  Google Scholar 

  44. Verge VM, Merlio JP, Grondin J et al (1992) Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF. J Neurosci 12:4011–4022

    CAS  PubMed  Google Scholar 

  45. Verge VMK, Richardson PM, Benoit R, Riopelle RJ (1989) Histochemical characterization of sensory neurons with high-affinity receptors for nerve growth factor. J Neurocytol 18:583–591. doi:10.1007/BF01187079

    CAS  PubMed  Google Scholar 

  46. Mu X, Silos-Santiago I, Carroll SL, Snider WD (1993) Neurotrophin receptor genes are expressed in distinct patterns in developing dorsal root ganglia. J Neurosci 13:4029–4041

    CAS  PubMed  Google Scholar 

  47. Bennett DLD, Averill SS, Clary DOD et al (1996) Postnatal changes in the expression of the trkA high-affinity NGF receptor in primary sensory neurons. Eur J Neurosci 8:2204–2208. doi:10.1111/j.1460-9568.1996.tb00742.x

    CAS  PubMed  Google Scholar 

  48. McMahon SB, Armanini MP, Ling LH, Phillips HS (1994) Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12:1161–1171

    CAS  PubMed  Google Scholar 

  49. Molliver DC, Radeke MJ, Feinstein SC, Snider WD (1995) Presence or absence of TrKA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J Comp Neurol 361:404–416. doi:10.1002/cne.903610305

    CAS  PubMed  Google Scholar 

  50. Smeyne RJ, Klein R, Schnapp A et al (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249. doi:10.1038/368246a0

    CAS  PubMed  Google Scholar 

  51. Crowley C, Spencer SD, Nishimura MC et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011

    CAS  PubMed  Google Scholar 

  52. Stucky CL, Koltzenburg M, Schneider M et al (1999) Overexpression of nerve growth factor in skin selectively affects the survival and functional properties of nociceptors. J Neurosci 19:8509–8516

    CAS  PubMed  Google Scholar 

  53. Wetmore C, Olson L (1995) Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353:143–159. doi:10.1002/cne.903530113

    CAS  PubMed  Google Scholar 

  54. Michael GJG, Averill SS, Nitkunan AA et al (1997) Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 17:8476–8490

    CAS  PubMed  Google Scholar 

  55. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    PubMed  Google Scholar 

  56. Bennett DL, Michael GJ, Ramachandran N et al (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 18:3059–3072

    CAS  PubMed  Google Scholar 

  57. Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632

    CAS  PubMed  Google Scholar 

  58. Light AR, Trevino DL, Perl ER (1979) Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186:151–171. doi:10.1002/cne.901860204

    CAS  PubMed  Google Scholar 

  59. Malmberg AB (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKC. Science (New York, NY) 278:279–283. doi:10.1126/science.278.5336.279

    CAS  Google Scholar 

  60. Pannese E, Procacci P (2002) Ultrastructural localization of NGF receptors in satellite cells of the rat spinal ganglia. J Neurocytol 31:755–763. doi:10.1023/A:1025708132119

    CAS  PubMed  Google Scholar 

  61. Kuo L-T, Groves MJ, Scaravilli F et al (2007) Neurotrophin-3 administration alters neurotrophin, neurotrophin receptor and nestin mRNA expression in rat dorsal root ganglia following axotomy. Neuroscience 147:491–507. doi:10.1016/j.neuroscience.2007.04.023

    CAS  PubMed  Google Scholar 

  62. Zhou X-F, Chie ET, Deng YS et al (1999) Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 92:841–853

    CAS  PubMed  Google Scholar 

  63. Zhou X-F, Deng YS, Chie E et al (1999) Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci 11:1711–1722

    CAS  PubMed  Google Scholar 

  64. van Velzen M, Laman JD, Kleinjan A et al (2009) Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol 183:2456–2461. doi:10.4049/jimmunol.0900890

    PubMed  Google Scholar 

  65. Geuna S, Raimondo S, Ronchi G et al (2009) Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27–46. doi:10.1016/S0074-7742(09)87003-7

    PubMed  Google Scholar 

  66. Geuna S, Fornaro M, Raimondo S, Giacobini-Robecchi MG (2010) Plasticity and regeneration in the peripheral nervous system. Ital J Anat Embryol 115:91–94

    PubMed  Google Scholar 

  67. Huang T-Y, Belzer V, Hanani M (2010) Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur J Pain 14(49):e1–11. doi:10.1016/j.ejpain.2009.02.005

    PubMed  Google Scholar 

  68. Ramer MS, Bradbury EJ (2001) Nerve growth factor induces P2X3 expression in sensory neurons. J Neurochem 77:864–875

    CAS  PubMed  Google Scholar 

  69. Hanani M, Huang TY, Cherkas PS et al (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283

    CAS  PubMed  Google Scholar 

  70. Pannese E, Ledda M, Cherkas PS et al (2003) Satellite cell reactions to axon injury of sensory ganglion neurons: increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat Embryol 206:337–347. doi:10.1007/s00429-002-0301-6

    CAS  PubMed  Google Scholar 

  71. Bergman E, Fundin BT, Ulfhake B (1999) Effects of aging and axotomy on the expression of neurotrophin receptors in primary sensory neurons. J Comp Neurol 410:368–386

    CAS  PubMed  Google Scholar 

  72. Obata K, Katsura H, Sakurai J et al (2006) Suppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury. J Neurosci 26:11974–11986. doi:10.1523/JNEUROSCI.3188-06.2006

    CAS  PubMed  Google Scholar 

  73. Apfel SC, Wright DE, Wiideman AM et al (1996) Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol Cell Neurosci 7:134–142. doi:10.1006/mcne.1996.0010

    CAS  PubMed  Google Scholar 

  74. Cho HJH, Kim JKJ, Park HCH et al (1998) Changes in brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia, spinal cord, and gracile nuclei following cut or crush injuries. Exp Neurol 154:7–7. doi:10.1006/exnr.1998.6936

    Google Scholar 

  75. Fukuoka T, Kondo E, Dai Y et al (2001) Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci 21:4891–4900

    CAS  PubMed  Google Scholar 

  76. Mannion RJ, Costigan M, Decosterd I et al (1999) Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 96:9385–9390. doi:10.1073/pnas.96.16.9385

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Bennett DL (2001) Neurotrophic factors: important regulators of nociceptive function. Neuroscientist 7:13–17

    CAS  PubMed  Google Scholar 

  78. Pezet S, Malcangio M, Lever IJ et al (2002) Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 21:684–695

    CAS  PubMed  Google Scholar 

  79. McMahon SBS, Jones NGN (2004) Plasticity of pain signaling: role of neurotrophic factors exemplified by acid-induced pain. J Neurobiol 61:72–87. doi:10.1002/neu.20093

    CAS  PubMed  Google Scholar 

  80. Ha SOS, Kim JKJ, Hong HSH et al (2000) Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience 107:301–309

    Google Scholar 

  81. Ramer MS, Thompson SW, McMahon SB (1999) Causes and consequences of sympathetic basket formation in dorsal root ganglia. Pain Suppl 6:S111–20

    Google Scholar 

  82. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538. doi:10.1146/annurev.neuro.29.051605.112929

    CAS  PubMed  Google Scholar 

  83. Cajal SRY (1928) Degeneration and regeneration of the nervous system. Oxford University Press, Oxford

  84. Munson JB, Shelton DL, McMahon SB (1997) Adult mammalian sensory and motor neurons: roles of endogenous neurotrophins and rescue by exogenous neurotrophins after axotomy. J Neurosci 17:470–476

    CAS  PubMed  Google Scholar 

  85. Kurata S, Goto T, Gunjigake KK et al (2013) Nerve growth factor involves mutual interaction between neurons and satellite glial cells in the rat trigeminal ganglion. Acta Histochem Cytochem 46:65–73. doi:10.1267/ahc.13003

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Castillo C, Norcini M, Martin Hernandez LA et al (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240C:135–146. doi:10.1016/j.neuroscience.2013.02.031

    Google Scholar 

  87. Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21:592–598. doi:10.1016/j.bbi.2006.11.011

    CAS  PubMed  Google Scholar 

  88. Ohara PT, Vit J-P, Bhargava A et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463. doi:10.1177/1073858409336094

    PubMed Central  PubMed  Google Scholar 

  89. Jasmin L, Vit J-P, Bhargava A, Ohara PT (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6:63–71. doi:10.1017/S1740925X10000098

    PubMed Central  PubMed  Google Scholar 

  90. Qiao L-YL, Vizzard MAM (2005) Spinal cord injury-induced expression of TrkA, TrkB, phosphorylated CREB, and c-Jun in rat lumbosacral dorsal root ganglia. J Comp Neurol 482:142–154. doi:10.1002/cne.20394

    CAS  PubMed  Google Scholar 

  91. Miller FD, Speelman A, Mathew TC et al (1994) Nerve growth factor derived from terminals selectively increases the ratio of p75 to trkA NGF receptors on mature sympathetic neurons. Dev Biol 161:206–217. doi:10.1006/dbio.1994.1021

    PubMed  Google Scholar 

  92. Belliveau DJ (1997) NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J Cell Biol 136:375–388. doi:10.1083/jcb.136.2.375

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Zhou X-F, Rush RA, McLachlan EM (1996) Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 16:2901–2911

    CAS  PubMed  Google Scholar 

  94. Ramer M, Bisby M (1997) Reduced sympathetic sprouting occurs in dorsal root ganglia after axotomy in mice lacking low-affinity neurotrophin receptor. Neurosci Lett 228:9–12

    CAS  PubMed  Google Scholar 

  95. Otto DD, Unsicker KK, Grothe CC (1987) Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia. Neurosci Lett 83:156–160

    CAS  PubMed  Google Scholar 

  96. Cheema SS, Barrett GL, Bartlett PF (1996) Reducing p75 nerve growth factor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. J Neurosci Res 46:239–245. doi:10.1002/(SICI)1097-4547(19961015)46:2<239::AID-JNR12>3.0.CO;2-Y

    CAS  PubMed  Google Scholar 

  97. Vestergaard S, Tandrup T, Jakobsen J (1997) Effect of permanent axotomy on number and volume of dorsal root ganglion cell bodies. J Comp Neurol 388:307–312

    CAS  PubMed  Google Scholar 

  98. Degn J, Tandrup T, Jakobsen J (1999) Effect of nerve crush on perikaryal number and volume of neurons in adult rat dorsal root ganglion. J Comp Neurol 412:186–192. doi:10.1002/(SICI)1096-9861(19990913)412:1<186::AID-CNE14>3.0.CO;2-H

    CAS  PubMed  Google Scholar 

  99. Shi TJ, Tandrup T, Bergman E et al (2001) Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6 J mouse: marked changes both in cell numbers and neuropeptide expression. Neuroscience 105:249–263

    CAS  PubMed  Google Scholar 

  100. Gjerstad MD, Tandrup T, Koltzenburg M, Jakobsen J (2002) Predominant neuronal B-cell loss in L5 DRG of p75 receptor-deficient mice. J Anat 200:81–87

    PubMed  Google Scholar 

  101. Sørensen B, Tandrup T, Koltzenburg M, Jakobsen J (2003) No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice. J Comp Neurol 459:242–250. doi:10.1002/cne.10625

    PubMed  Google Scholar 

  102. Zhou X-F, Li W-P, Zhou FH-H et al (2005) Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Neuroscience 132:591–603. doi:10.1016/j.neuroscience.2004.12.034

    CAS  PubMed  Google Scholar 

  103. Jiang Y, Zhang JS, Jakobsen J (2005) Differential effect of p75 neurotrophin receptor on expression of pro-apoptotic proteins c-jun, p38 and caspase-3 in dorsal root ganglion cells after axotomy in experimental diabetes. Neuroscience 132:1083–1092. doi:10.1016/j.neuroscience.2005.01.049

    CAS  PubMed  Google Scholar 

  104. Jiang Y, Jakobsen J (2010) Different apoptotic reactions of dorsal root ganglion A- and B-cells after sciatic nerve axotomy: effect of p75 neurotrophin receptor. Chin Med J 123:2695–2700

    CAS  PubMed  Google Scholar 

  105. Arnett MG, Ryals JM, Wright DE (2007) Pro-NGF, sortilin, and p75NTR: potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Res Rev 1183:32–42. doi:10.1016/j.brainres.2007.09.051

    CAS  Google Scholar 

  106. Vaegter CB, Jansen P, Fjorback AW et al (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14:54–61. doi:10.1038/nn.2689

    CAS  PubMed  Google Scholar 

  107. Averill SS, Michael GJG, Shortland PJP et al (2004) NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury. Eur J Neurosci 19:1437–1445. doi:10.1111/j.1460-9568.2004.03241.x

    PubMed  Google Scholar 

  108. Zwick M, Davis BM, Woodbury CJ et al (2002) Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. J Neurosci 22:4057–4065

    CAS  PubMed  Google Scholar 

  109. Obata KK, Yamanaka HH, Kobayashi KK et al (2004) Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci 24:10211–10222. doi:10.1523/JNEUROSCI.3388-04.2004

    CAS  PubMed  Google Scholar 

  110. Obata K, Yamanaka H, Dai Y et al (2004) Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats. Eur J Neurosci 20:2881–2895. doi:10.1111/j.1460-9568.2004.03754.x

    PubMed  Google Scholar 

  111. Bergmann I, Reiter R, Toyka KV, Koltzenburg M (1998) Nerve growth factor evokes hyperalgesia in mice lacking the low-affinity neurotrophin receptor p75. Neurosci Lett 255:87–90

    CAS  PubMed  Google Scholar 

  112. Chuang HH, Prescott ED, Kong H et al (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962. doi:10.1038/35082088

    CAS  PubMed  Google Scholar 

  113. Bonnington JKJ, McNaughton PAP (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol 551:433–446. doi:10.1113/jphysiol.2003.039990

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kobayashi K, Fukuoka T, Obata K et al (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606. doi:10.1002/cne.20794

    CAS  PubMed  Google Scholar 

  115. Ji R-R, Samad TA, Jin S-X et al (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    CAS  PubMed  Google Scholar 

  116. Bron R, Klesse LJ, Shah K et al (2003) Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Mol Cell Neurosci 22:118–132

    CAS  PubMed  Google Scholar 

  117. Kerr BJ, Souslova V, McMahon SB, Wood JN (2001) A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport 12:3077–3080

    CAS  PubMed  Google Scholar 

  118. Mamet J, Lazdunski M, Voilley N (2003) How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons. J Biol Chem 278:48907–48913. doi:10.1074/jbc.M309468200

    CAS  PubMed  Google Scholar 

  119. Mantyh PW, Koltzenburg M, Mendell LM et al (2011) Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 115:189–204. doi:10.1097/ALN.0b013e31821b1ac5

    PubMed Central  PubMed  Google Scholar 

  120. Thomas PK, Berthold CH, Ochoa J (1993) Microscopic anatomy of the peripheral nervous system. In: Peripheral neuropathy, 3rd ed. WB Saunders, Philadelphia, PA, pp 28–92

  121. Key A, Retzius G (1876) Studien der Anatomie des Nervensystems und des Bindegewebes. Samson & Wallin

  122. Akert K, Sandri C, Weibel ER et al (1976) The fine structure of the perineural endothelium. Cell Tissue Res 165:281–295

    CAS  PubMed  Google Scholar 

  123. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflamm 8:110. doi:10.1523/JNEUROSCI.2269-10.2010

    Google Scholar 

  124. Lubińska L (1982) Patterns of Wallerian degeneration of myelinated fibres in short and long peripheral stumps and in isolated segments of rat phrenic nerve. Interpretation of the role of axoplasmic flow of the trophic factor. Brain Res Rev 233:227–240

    Google Scholar 

  125. Schlaepfer WW (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res Rev 136:1–9

    CAS  Google Scholar 

  126. Vial JD (1958) The early changes in the axoplasm during Wallerian degeneration. J Biophys Biochem Cytol 4:551–555

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Ghabriel MN, Allt G (1979) The role of Schmidt–Lanterman incisures in Wallerian degeneration: II. An electron microscopic study. Acta Neuropathol 48:95–103

    CAS  PubMed  Google Scholar 

  128. Yao D, Li M, Shen D et al (2013) Expression changes and bioinformatic analysis of Wallerian degeneration after sciatic nerve injury in rat. Neurosci Bull 29:321–332. doi:10.1007/s12264-013-1340-0

    PubMed  Google Scholar 

  129. Funakoshi H, Risling M, Carlstedt T, et al. (1998) Targeted expression of a multifunctional chimeric neurotrophin in the lesioned sciatic nerve accelerates regeneration of sensory and motor axons. 95:5269–5274

  130. Funakoshi H, Frisén J, Barbany G et al (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    CAS  PubMed  Google Scholar 

  131. Heumann R, Lindholm D, Bandtlow C et al (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci U S A 84:8735–8739

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Thoenen H, Bandtlow C, Heumann R et al (1988) Nerve growth factor: cellular localization and regulation of synthesis. Cell Mol Neurobiol 8:35–40

    CAS  PubMed  Google Scholar 

  133. Warner LE, Mancias P, Butler IJ et al (1998) Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 18:382–384. doi:10.1038/ng0498-382

    CAS  PubMed  Google Scholar 

  134. Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565. doi:10.1002/glia.20761

    PubMed  Google Scholar 

  135. Fontana X, Hristova M, Da Costa C et al (2012) c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 198:127–141. doi:10.1083/jcb.201205025

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Kim CF, Moalem-Taylor G (2011) Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res Rev 1405:95–108. doi:10.1016/j.brainres.2011.06.022

    CAS  Google Scholar 

  137. Shubayev VI, Angert M, Dolkas J et al (2006) TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci 31:407–415. doi:10.1016/j.mcn.2005.10.011

    CAS  PubMed  Google Scholar 

  138. Dubový P (2011) Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 193:267–275. doi:10.1016/j.aanat.2011.02.011

    PubMed  Google Scholar 

  139. Chen Z-L, Yu W-M, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–33. doi:10.1146/annurev.neuro.30.051606.094337

    PubMed  Google Scholar 

  140. Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116. doi:10.1007/BF02740621

    CAS  PubMed  Google Scholar 

  141. Sunderland S (1952) Factors influencing the course of regeneration and the quality of the recovery after nerve suture. Brain 75:19–54

    CAS  PubMed  Google Scholar 

  142. Ernfors P, Lee K-F, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150. doi:10.1038/368147a0

    CAS  PubMed  Google Scholar 

  143. Fariñas I, Jones KR, Backus C et al (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661. doi:10.1038/369658a0

    PubMed  Google Scholar 

  144. Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360:753–5. doi:10.1038/360753a0

    CAS  PubMed  Google Scholar 

  145. Sendtner M, Holtmann B, Kolbeck R et al (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759. doi:10.1038/360757a0

    CAS  PubMed  Google Scholar 

  146. Koliatsos VE, Clatterbuck RE, Winslow JW et al (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10:359–367

    CAS  PubMed  Google Scholar 

  147. Funakoshi H, Belluardo N, Arenas E, et al. (1995) Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science (New York, NY) 268:1495–1499

  148. Meyer M, Matsuoka I, Wetmore C et al (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    CAS  PubMed  Google Scholar 

  149. Zhang JYJ, Luo XGX, Xian CJC et al (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci 12:4171–4180. doi:10.1111/j.1460-9568.2000.01312.x

    CAS  PubMed  Google Scholar 

  150. Acheson A, Barker PA, Alderson RF et al (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7:265–275

    CAS  PubMed  Google Scholar 

  151. Zhou X-F, Rush RA (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74:945–953

    CAS  PubMed  Google Scholar 

  152. Tonra JR, Curtis R, Wong V et al (1998) Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci 18:4374–4383

    CAS  PubMed  Google Scholar 

  153. Korte M, Carroll P, Wolf E et al (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92:8856–8860

    CAS  PubMed Central  PubMed  Google Scholar 

  154. English AW, Meador W, Carrasco DI (2005) Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci 21:2624–2634. doi:10.1111/j.1460-9568.2005.04124.x

    PubMed  Google Scholar 

  155. Boyd JG, Gordon T (2002) A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 15:613–626

    CAS  PubMed  Google Scholar 

  156. Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci 15:3886–3895

    CAS  PubMed  Google Scholar 

  157. Wood SJ, Pritchard J, Sofroniew MV (1989) Re-expression of nerve growth factor receptor after axonal injury recapitulates a developmental event in motor neurons: differential regulation when regeneration is allowed or prevented. Eur J Neurosci 2:650–657. doi:10.1111/j.1460-9568.1990.tb00454.x

    Google Scholar 

  158. Ernfors P, Henschen A, Olson L, Persson H (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2:1605–1613

    CAS  PubMed  Google Scholar 

  159. Bussmann KAV, Sofroniew MV (1999) Re-expression of p75NTR by adult motor neurons after axotomy is triggered by retrograde transport of a positive signal from axons regrowing through damaged or denervated peripheral nerve tissue. Neuroscience 91:273–281. doi:10.1016/S0306-4522(98)00562-4

    CAS  PubMed  Google Scholar 

  160. Taniuchi M, Clark HB, Schweitzer JB, Johnson EM Jr (1988) Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 8:664–681

    CAS  PubMed  Google Scholar 

  161. Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A 83:4094–4098

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Tomita K, Kubo T, Matsuda K et al (2007) The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia 55:1199–1208. doi:10.1002/glia.20533

    PubMed  Google Scholar 

  163. Wilhelm JC, Xu M, Cucoranu D et al (2012) Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci 32:5002–5009. doi:10.1523/JNEUROSCI.1411-11.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Geremia NM, Pettersson LME, Hasmatali JC et al (2010) Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 223:128–142. doi:10.1016/j.expneurol.2009.07.022

    CAS  PubMed  Google Scholar 

  165. Sun Y, Lim Y, Li F et al (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS ONE 7:e35883. doi:10.1371/journal.pone.0035883

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104:1623–1631

    CAS  PubMed  Google Scholar 

  167. Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658–659. doi:10.1038/330658a0

    CAS  PubMed  Google Scholar 

  168. Johnson EM Jr, Taniuchi M, DiStefano PS (1988) Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci 11:299–304

    CAS  PubMed  Google Scholar 

  169. Diamond J, Foerster A, Holmes M, Coughlin M (1992) Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J Neurosci 12:1467–1476

    CAS  PubMed  Google Scholar 

  170. Meier C, Parmantier E, Brennan A et al (1999) Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 19:3847–3859

    CAS  PubMed  Google Scholar 

  171. Sahenk Z, Oblinger J, Edwards C (2008) Neurotrophin-3 deficient Schwann cells impair nerve regeneration. Exp Neurol 212:552–6. doi:10.1016/j.expneurol.2008.04.015

    CAS  PubMed  Google Scholar 

  172. Li H, Terenghi G, Hall SM (1997) Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20:333–347

    CAS  PubMed  Google Scholar 

  173. Sulaiman OA, Gordon T (2000) Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia 32:234–246. doi:10.1002/1098-1136(200012)32:3<234::AID-GLIA40>3.0.CO;2-3

    CAS  PubMed  Google Scholar 

  174. Griesbeck O, Parsadanian AS, Sendtner M, Thoenen H (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 42:21–33. doi:10.1002/jnr.490420104

    CAS  PubMed  Google Scholar 

  175. Yin Q, kemp GJ, Yu L-G (2001) Neurotrophin-4 delivered by fibrin glue promotes peripheral nerve regeneration. Muscle Nerve 24:345–351. doi:10.1002/1097-4598(200103)24:3<345::AID-MUS1004>3.0.CO;2-P

    CAS  PubMed  Google Scholar 

  176. Jessen KR, Mirsky R (2002) Signals that determine Schwann cell identity. J Anat 200:367–376

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Höke A (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655. doi:10.1523/JNEUROSCI.1620-06.2006

    PubMed  Google Scholar 

  178. Brushart TM, Aspalter M, Griffin JW et al (2013) Schwann cell phenotype is regulated by axon modality and central–peripheral location, and persists in vitro. Exp Neurol 247:272–281. doi:10.1016/j.expneurol.2013.05.007

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Meyer zu Hörste G, Prukop T, Nave K-A, Sereda MW (2006) Myelin disorders: causes and perspectives of Charcot–Marie–Tooth neuropathy. J Mol Neurosci 28:77–88

    PubMed  Google Scholar 

  180. Tzakos AG, Troganis A, Theodorou V et al (2005) Structure and function of the myelin proteins: current status and perspectives in relation to multiple sclerosis. Curr Med Chem 12:1569–1587

    CAS  PubMed  Google Scholar 

  181. Bunge MB, Williams AK, Wood PM (1982) Neuron–Schwann cell interaction in basal lamina formation. Dev Biol 92:449–460

    CAS  PubMed  Google Scholar 

  182. Yamauchi J, Chan JR, Shooter EM (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A 100:14421–14426. doi:10.1073/pnas.2336152100

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779. doi:10.1073/pnas.0402795101

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Anton ES, Weskamp G, Reichardt LF, Matthew WD (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 91:2795–2799

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Bentley CA, Lee KF (2000) p75 is important for axon growth and Schwann cell migration during development. J Neurosci 20:7706–7715

    CAS  PubMed  Google Scholar 

  186. Chan JR, Watkins TA, Cosgaya JM et al (2004) NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–191

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A 98:14661–14668. doi:10.1073/pnas.251543398

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Ng BK, Chen L, Mandemakers W et al (2007) Anterograde transport and secretion of brain-derived neurotrophic factor along sensory axons promote Schwann cell myelination. J Neurosci 27:7597–7603. doi:10.1523/JNEUROSCI.0563-07.2007

    CAS  PubMed  Google Scholar 

  189. Cosgaya JM, Chan JR, Shooter EM (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination. Science (New York, NY) 298:1245–1248. doi:10.1126/science.1076595

    CAS  Google Scholar 

  190. Song X-Y, Zhou FH-H, Zhong J-H et al (2006) Knockout of p75NTR impairs re-myelination of injured sciatic nerve in mice. J Neurochem 96:833–842. doi:10.1111/j.1471-4159.2005.03564.x

    CAS  PubMed  Google Scholar 

  191. Kemp SWP, Webb AA, Dhaliwal S et al (2011) Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol 229:460–470. doi:10.1016/j.expneurol.2011.03.017

    CAS  PubMed  Google Scholar 

  192. Jubran M, Widenfalk J (2003) Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol 181:204–212

    CAS  PubMed  Google Scholar 

  193. Tannemaat MR, Boer GJ, Verhaagen J, Malessy MJA (2007) Genetic modification of human surel nerve segments by a lentiviral vector encoding nerve growth factor. Neurosurgery 61:1286–1296. doi:10.1227/01.neu.0000306108.78044.a2

    PubMed  Google Scholar 

  194. Tannemaat MR, Eggers R, Hendriks WT et al (2008) Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 28:1467–1479. doi:10.1111/j.1460-9568.2008.06452.x

    PubMed  Google Scholar 

  195. Hu X, Cai J, Yang J, Smith GM (2010) Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol 223:153–165. doi:10.1016/j.expneurol.2009.08.025

    CAS  PubMed Central  PubMed  Google Scholar 

  196. de Boer R, Knight AM, Borntraeger A et al (2011) Rat sciatic nerve repair with a poly-lactic-co-glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery 31:293–302. doi:10.1002/micr.20869

    PubMed  Google Scholar 

  197. Chung T-W, Yang M-C, Tseng C-C et al (2011) Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits. Biomaterials 32:734–743. doi:10.1016/j.biomaterials.2010.09.023

    CAS  PubMed  Google Scholar 

  198. Yan Q, Yin Y, Li B (2012) Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration. Biomed Eng Online 11:36. doi:10.1186/1475-925X-11-36

    PubMed Central  PubMed  Google Scholar 

  199. Shakhbazau A, Kawasoe J, Hoyng SA et al (2012) Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci 50:103–112. doi:10.1016/j.mcn.2012.04.004

    CAS  PubMed  Google Scholar 

  200. Sahenk Z, Nagaraja HN, McCracken BS et al (2005) NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 65:681–689. doi:10.1212/01.wnl.0000171978.70849.c5

    CAS  PubMed  Google Scholar 

  201. Godinho MJ, Teh L, Pollett MA et al (2012) Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS ONE 8:e69987–e69987. doi:10.1371/journal.pone.0069987

    Google Scholar 

  202. Gordon T, Sulaiman O, Boyd JG (2003) Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst 8:236–250

    PubMed  Google Scholar 

  203. English AW, Schwartz G, Meador W et al (2007) Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol 67:158–172. doi:10.1002/dneu.20339

    CAS  PubMed  Google Scholar 

  204. Nadim W, Anderson PN, Turmaine M (1990) The role of Schwann cells and basal lamina tubes in the regeneration of axons through long lengths of freeze-killed nerve grafts. Neuropathol Appl Neurobiol 16:411–421

    CAS  PubMed  Google Scholar 

  205. Krekoski CA, Neubauer D, Zuo J, Muir D (2001) Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci 21:6206–6213

    CAS  PubMed  Google Scholar 

  206. Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390

    CAS  PubMed  Google Scholar 

  207. Geremia NM, Gordon T, Brushart TM et al (2007) Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 205:347–359. doi:10.1016/j.expneurol.2007.01.040

    CAS  PubMed  Google Scholar 

  208. Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    CAS  PubMed  Google Scholar 

  209. Sabatier MJ, Redmon N, Schwartz G, English AW (2008) Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol 211:489–493. doi:10.1016/j.expneurol.2008.02.013

    CAS  PubMed Central  PubMed  Google Scholar 

  210. English AW, Cucoranu D, Mulligan A, Sabatier M (2009) Treadmill training enhances axon regeneration in injured mouse peripheral nerves without increased loss of topographic specificity. J Comp Neurol 517:245–255. doi:10.1002/cne.22149

    PubMed Central  PubMed  Google Scholar 

  211. English AW, Cucoranu D, Mulligan A et al (2011) Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury. Eur J Neurosci 33:2265–2271. doi:10.1111/j.1460-9568.2011.07724.x

    PubMed Central  PubMed  Google Scholar 

  212. Buck CR, Seburn KL, Cope TC (2000) Neurotrophin expression by spinal motoneurons in adult and developing rats. J Comp Neurol 416:309–318

    CAS  PubMed  Google Scholar 

  213. Frisén J, Verge VM, Fried K et al (1993) Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci U S A 90:4971–4975

    PubMed Central  PubMed  Google Scholar 

  214. Gordon T (2009) The role of neurotrophic factors in nerve regeneration. J Neurosurg 26:E3. doi:10.3171/FOC.2009.26.2.E3

    Google Scholar 

  215. Jang S-W, Liu X, Yepes M et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107:2687–2692. doi:10.1073/pnas.0913572107

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Jang S-W, Liu X, Chan CB et al (2010) Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS ONE 5:e11528. doi:10.1371/journal.pone.0011528

    PubMed Central  PubMed  Google Scholar 

  217. English AW, Liu K, Nicolini JM, et al. (2013) Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc Natl Acad Sci USA 1–6. doi: 10.1073/pnas.1303646110

  218. Yaksh TL (1999) Spinal drug delivery. Elsevier Health Sciences

  219. Cook MJ (1965) The anatomy of the laboratory mouse. Academic Press

  220. Green EL (1962) Quantitative genetics of skeletal variations in the mouse: II. Crosses between four inbred strains (C3H, DBA, C57BL, BALB/c). Genetics 47:1085–1096

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Green EL (1941) Genetic and non-genetic factors which influence the type of the skeleton in an inbred strain of mice. Genetics 26:192–222

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Hankenson FC, Garzel LM, Fischer DD et al (2008) Evaluation of tail biopsy collection in laboratory mice (Mus musculus): vertebral ossification, DNA quantity, and acute behavioral responses. J Am Assoc Lab Anim Sci JAALAS 47:10–18

    CAS  Google Scholar 

  223. Shinohara H (1999) The mouse vertebrae: changes in the morphology of mouse vertebrae exhibit specific patterns over limited numbers of vertebral levels. Okajimas Folia Anat Japonica 76:17–31

    CAS  Google Scholar 

  224. Sakla FB (1969) Quantitative studies on the postnatal growth of the spinal cord and the vertebral column of the albino mouse. J Comp Neurol 136:237–247. doi:10.1002/cne.901360209

    CAS  PubMed  Google Scholar 

  225. Watson C, Paxinos G, Kayalioglu G (2009) The spinal cord. Academic Press

  226. Biscoe TJ, Nickels SM, Stirling CA (1982) Numbers and sizes of nerve fibres in mouse spinal roots. Q J Exp Physiol (Cambridge, England) 67:473–494

    Google Scholar 

  227. Altman J, Bayer SA (1984) The development of the rat spinal cord. Adv Anat Embryol Cell Biol 85:1–164

    CAS  PubMed  Google Scholar 

  228. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:414–495

    CAS  PubMed  Google Scholar 

  229. Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat: I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141. doi:10.1002/cne.902300112

    CAS  PubMed  Google Scholar 

  230. Caspary T, Anderson KV (2003) Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4:289–297. doi:10.1038/nrn1073

    PubMed  Google Scholar 

  231. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836. doi:10.1038/nrn2947

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Ferri CC, Moore FA, Bisby MA (1998) Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J Neurobiol 34:1–9

    CAS  PubMed  Google Scholar 

  233. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383:716–719. doi:10.1038/383716a0

    CAS  PubMed  Google Scholar 

  234. Beattie MS, Harrington AW, Lee R et al (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36:375–386

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Michael GJ, Kaya E, Averill S et al (1997) TrkA immunoreactive neurones in the rat spinal cord. J Comp Neurol 385:441–455

    CAS  PubMed  Google Scholar 

  236. Ramer MS, Bradbury EJ, McMahon SB (2001) Nerve growth factor induces P2X(3) expression in sensory neurons. J Neurochem 77:864–875. doi:10.1046/j.1471-4159.2001.00288.x

    CAS  PubMed  Google Scholar 

  237. Scarisbrick IA, Isackson PJ, Windebank AJ (1999) Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the adult rat spinal cord: regulation by the glutamate receptor agonist kainic acid. J Neurosci 19:7757–7769

    CAS  PubMed  Google Scholar 

  238. Yan Q, Radeke MJ, Matheson CR et al (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157

    CAS  PubMed  Google Scholar 

  239. Merlio JP, Ernfors P, Jaber M, Persson H (1992) Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience 51:513–532

    CAS  PubMed  Google Scholar 

  240. Zhou L-J, Yang T, Wei X et al (2011) Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 25:322–334. doi:10.1016/j.bbi.2010.09.025

    CAS  PubMed  Google Scholar 

  241. Thompson SW, Bennett DL, Kerr BJ et al (1999) Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci U S A 96:7714–7718

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Miletic G, Miletic V (2002) Increases in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci Lett 319:137–140

    CAS  PubMed  Google Scholar 

  243. McMahon SB, Cafferty W (2004) Neurotrophic influences on neuropathic pain. Novartis Found Symp 261:68–102

    CAS  PubMed  Google Scholar 

  244. Yajima Y, Narita M, Narita M et al (2002) Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res Rev 958:338–346

    CAS  Google Scholar 

  245. Wang X, Ratnam J, Zou B et al (2009) TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci 29:5508–5515. doi:10.1523/JNEUROSCI.4288-08.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Michael GJ, Averill S, Shortland PJ et al (1999) Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 11:3539–3551

    CAS  PubMed  Google Scholar 

  247. Li L, Xian CJ, Zhong J-H, Zhou X-F (2006) Upregulation of brain-derived neurotrophic factor in the sensory pathway by selective motor nerve injury in adult rats. Neurotox Res 9:269–283

    CAS  PubMed  Google Scholar 

  248. Slack SE, Grist J, Mac Q et al (2005) TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol 489:59–68. doi:10.1002/cne.20606

    CAS  PubMed  Google Scholar 

  249. Matsumoto T, Rauskolb S, Polack M et al (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11:131–133. doi:10.1038/nn2038

    CAS  PubMed  Google Scholar 

  250. Srinivasan B, Roque CH, Hempstead BL et al (2004) Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem 279:41839–41845. doi:10.1074/jbc.M402872200

    CAS  PubMed  Google Scholar 

  251. Ulmann L, Hatcher JP, Hughes JP et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268. doi:10.1523/JNEUROSCI.2308-08.2008

    CAS  PubMed  Google Scholar 

  252. Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11:143–153

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Biffo S, Offenhauser N, Carter BD, Barde YA (1995) Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development (Cambridge, England) 121:2461–2470

  254. Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Saarelainen T, Pussinen R, Koponen E et al (2000) Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse (New York, NY) 38:102–104. doi:10.1002/1098-2396(200010)38:1<102::AID-SYN11>3.0.CO;2-K

    CAS  Google Scholar 

  256. Luikart BW, Nef S, Shipman T, Parada LF (2003) In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience 117:847–858

    CAS  PubMed  Google Scholar 

  257. Dorsey SG, Renn CL, Carim-Todd L et al (2006) In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 51:21–28. doi:10.1016/j.neuron.2006.06.009

    CAS  PubMed  Google Scholar 

  258. Carim-Todd L, Bath KG, Fulgenzi G et al (2009) Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29:678–685. doi:10.1523/JNEUROSCI.5060-08.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Baxter GT, Radeke MJ, Kuo RC et al (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17:2683–2690

    CAS  PubMed  Google Scholar 

  260. Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349. doi:10.1038/73911

    CAS  PubMed  Google Scholar 

  261. Renn CL, Leitch CC, Dorsey SG (2009) In vivo evidence that truncated trkB.T1 participates in nociception. Mol Pain 5:61

    PubMed Central  PubMed  Google Scholar 

  262. Rose CR, Blum R, Pichler B et al (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78. doi:10.1038/nature01983

    CAS  PubMed  Google Scholar 

  263. Dreyfus CF, Dai X, Lercher LD et al (1999) Expression of neurotrophins in the adult spinal cord in vivo. J Neurosci Res 56:1–7. doi:10.1002/(SICI)1097-4547(19990401)56:1<1::AID-JNR1>3.0.CO;2-3

    CAS  PubMed  Google Scholar 

  264. Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55:353–364. doi:10.1016/j.neuron.2007.07.016

    CAS  PubMed  Google Scholar 

  265. Whiteside GT, Munglani R (2001) Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 64:168–173

    CAS  PubMed  Google Scholar 

  266. Scholz J, Broom DC, Youn D-H et al (2005) Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 25:7317–7323. doi:10.1523/JNEUROSCI.1526-05.2005

    CAS  PubMed  Google Scholar 

  267. Torsney C, MacDermott AB (2006) Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 26:1833–1843. doi:10.1523/JNEUROSCI.4584-05.2006

    CAS  PubMed  Google Scholar 

  268. Hathway GJ, Vega-Avelaira D, Moss A et al (2009) Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144:110–118. doi:10.1016/j.pain.2009.03.022

    PubMed Central  PubMed  Google Scholar 

  269. Suter MR, Berta T, Gao Y-J et al (2009) Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury. Mol Pain 5:53. doi:10.1186/1744-8069-5-53

    PubMed Central  PubMed  Google Scholar 

  270. Calvo M, Bennett DLH (2012) The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 234:271–282. doi:10.1016/j.expneurol.2011.08.018

    CAS  PubMed  Google Scholar 

  271. Tsuda M, Shigemoto-Mogami Y, Koizumi S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783. doi:10.1038/nature01786

    CAS  PubMed  Google Scholar 

  272. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (New York, NY) 330:841–5. doi:10.1126/science.1194637

    CAS  Google Scholar 

  273. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    CAS  PubMed  Google Scholar 

  274. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313. doi:10.1002/jnr.20562

    CAS  PubMed  Google Scholar 

  275. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, NY) 308:1314–1318. doi:10.1126/science.1110647

    CAS  Google Scholar 

  276. White FA, Jung H, Miller RJ (2007) Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 14:20151–20158

    Google Scholar 

  277. Beggs S, Trang T, Salter MW (2012) P2X4R(+) microglia drive neuropathic pain. Nat Neurosci 15:1068–1073. doi:10.1038/nn.3155

    CAS  PubMed  Google Scholar 

  278. Martin S, Vincent J-P, Mazella J (2003) Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci 23:1198–1205

    CAS  PubMed  Google Scholar 

  279. Dicou E, Vincent J-P, Mazella J (2004) Neurotensin receptor-3/sortilin mediates neurotensin-induced cytokine/chemokine expression in a murine microglial cell line. J Neurosci Res 78:92–99. doi:10.1002/jnr.20231

    CAS  PubMed  Google Scholar 

  280. Eriksson NP, Persson JK, Svensson M et al (1993) A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res 96:19–27

    CAS  PubMed  Google Scholar 

  281. Beggs S, Salter MW (2007) Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain Behav Immun 21:624–633. doi:10.1016/j.bbi.2006.10.017

    CAS  PubMed  Google Scholar 

  282. Coyle DE (1998) Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 23:75–83

    CAS  PubMed  Google Scholar 

  283. Zhang F, Vadakkan KI, Kim SS et al (2008) Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse. Mol Pain. doi:10.1186/1744-8069-4-15

    Google Scholar 

  284. Tsuda M, Kuboyama K, Inoue T et al (2009) Behavioral phenotypes of mice lacking purinergic P2X. Mol Pain. doi:10.1186/1744-8069-5-28

    Google Scholar 

  285. Bennett MVL, Garré JM, Orellana JA et al (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res Rev 1487:3–15. doi:10.1016/j.brainres.2012.08.042

    CAS  Google Scholar 

  286. Foley JC, McIver SR, Haydon PG (2011) Gliotransmission modulates baseline mechanical nociception. Mol Pain 7:93. doi:10.1186/1744-8069-7-93

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Zhuang ZY, Wen YR, Zhang DR et al (2006) A Peptide c-Jun N-Terminal Kinase (JNK) Inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 26:3551–3560. doi:10.1523/JNEUROSCI.5290-05.2006

    CAS  PubMed  Google Scholar 

  288. Colburn RW, DeLeo JA, Rickman AJ et al (1997) Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol 79:163–175

    CAS  PubMed  Google Scholar 

  289. Nakagawa T, Wakamatsu K, Zhang N et al (2007) Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience 147:445–455. doi:10.1016/j.neuroscience.2007.03.045

    CAS  PubMed  Google Scholar 

  290. Liu W, Tang Y, Feng J (2011) Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci 89:141–146. doi:10.1016/j.lfs.2011.05.011

    CAS  PubMed  Google Scholar 

  291. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11. doi:10.1016/j.it.2006.11.007

    CAS  PubMed  Google Scholar 

  292. Sofroniew MV, Vinters HV (2009) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

    PubMed Central  PubMed  Google Scholar 

  293. Miyoshi K, Obata K, Kondo T et al (2008) Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci 28:12775–12787. doi:10.1523/JNEUROSCI.3512-08.2008

    CAS  PubMed  Google Scholar 

  294. Jin S-X, Zhuang Z-Y, Woolf CJ, Ji R-R (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017–4022

    CAS  PubMed  Google Scholar 

  295. Piao ZG, Cho I-H, Park CK et al (2006) Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 121:219–231. doi:10.1016/j.pain.2005.12.023

    CAS  PubMed  Google Scholar 

  296. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528. doi:10.1523/JNEUROSCI.5714-08.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Gomes C, Ferreira R, George J et al (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflamm 10:16. doi:10.1038/nm1103

    CAS  Google Scholar 

  298. Torsney C, MacDermott AB (2005) Neuroscience: a painful factor. Nature 438:923–925. doi:10.1038/438923a

    CAS  PubMed  Google Scholar 

  299. Yang J, Siao C-J, Nagappan G et al (2009) Neuronal release of proBDNF. Nat Neurosci 12:113–115. doi:10.1038/nn.2244

    PubMed Central  PubMed  Google Scholar 

  300. Woo NH, Teng HK, Siao CJ et al (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077. doi:10.1038/nn1510

    CAS  PubMed  Google Scholar 

  301. Petersen CM, Nielsen MS, Nykjaer A et al (1997) Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem 272:3599–3605

    CAS  PubMed  Google Scholar 

  302. Coull JAM, Boudreau D, Bachand K et al (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942. doi:10.1038/nature01868

    CAS  PubMed  Google Scholar 

  303. Coull JAM, Beggs S, Boudreau D et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021. doi:10.1038/nature04223

    CAS  PubMed  Google Scholar 

  304. Bohlhalter S, Weinmann O, Mohler H, Fritschy JM (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16:283–297

    CAS  PubMed  Google Scholar 

  305. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Jonas P, Bischofberger J, Sandkühler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science (New York, NY) 281:419–424

  307. Keller AF, Coull JAM, Chéry N et al (2001) Region-specific developmental specialization of GABA–glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J Neurosci 21:7871–7880

    CAS  PubMed  Google Scholar 

  308. Rivera C, Voipio J, Thomas-Crusells J et al (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691. doi:10.1523/JNEUROSCI.5265-03.2004

    CAS  PubMed  Google Scholar 

  309. Nabekura J, Ueno T, Okabe A et al (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417

    CAS  PubMed  Google Scholar 

  310. Rivera C, Li H, Thomas-Crusells J et al (2002) BDNF-induced TrkB activation down-regulates the K+–Cl cotransporter KCC2 and impairs neuronal Cl- extrusion. J Cell Biol 159:747–752. doi:10.1083/jcb.200209011

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Zhang X, Wang J, Zhou Q et al (2011) Brain-derived neurotrophic factor-activated astrocytes produce mechanical allodynia in neuropathic pain. Neuroscience 199:452–460. doi:10.1016/j.neuroscience.2011.10.017

    CAS  PubMed  Google Scholar 

  312. Constandil L, Goich M, Hernández A et al (2012) Cyclotraxin-B, a new TrkB antagonist, and glial blockade by propentofylline, equally prevent and reverse cold allodynia induced by BDNF or partial infraorbital nerve constriction in mice. J Pain 13:579–589. doi:10.1016/j.jpain.2012.03.008

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Lundbeck Foundation, Simon Fougner Hartmanns Familiefond, Familien Hede-Nielsens Fond, Aase og Ejnar Danielsens Fond and PAINCAGE (European Framework Programme 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bjerggaard Vaegter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richner, M., Ulrichsen, M., Elmegaard, S.L. et al. Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System. Mol Neurobiol 50, 945–970 (2014). https://doi.org/10.1007/s12035-014-8706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8706-9

Keywords

Navigation