Skip to main content

Advertisement

Log in

Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 19 December 2013

Abstract

Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

ANOVA:

Analysis of variance

BBB:

Basso, Beattie and Bresnahan

LC3:

Microtubule-associated protein 1 light chain 3

mTOR:

Mammalian target of rapamycin

PI3K:

Phosphatidylinositol-3-kinase

SCI:

Spinal cord injury

References

  1. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  CAS  PubMed  Google Scholar 

  4. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal–lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 25(9–10):1161–1172

    Article  CAS  PubMed  Google Scholar 

  7. Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898

    Article  CAS  PubMed  Google Scholar 

  8. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi S, Sato N, Yamamoto A, Ikegame Y, Nakashima S, Ogihara T et al (2009) Alzheimer disease-associated peptide, amyloid beta40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler Thromb Vasc Biol 29:1909–1915

    Article  CAS  PubMed  Google Scholar 

  11. Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R et al (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 17:962–974

    Article  CAS  PubMed  Google Scholar 

  12. Chu CT (2010) A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 19:R28–R37

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172:719–731

    Article  CAS  PubMed  Google Scholar 

  14. Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z (2009) Autophagy is upregulated in rats with status epilepticus and partly inhibited by vitamin E. Biochem Biophys Res Commun 379:949–953

    Article  CAS  PubMed  Google Scholar 

  15. Caro LH, Plomp PJ, Wolvetang EJ, Kerkhof C, Meijer AJ (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175:325–329

    Article  CAS  PubMed  Google Scholar 

  16. Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y (2004) 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol 45:265–274

    Article  CAS  PubMed  Google Scholar 

  17. Ito S, Koshikawa N, Mochizuki S, Takenaga K (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int J Oncol 31:261–268

    CAS  PubMed  Google Scholar 

  18. McFarland AJ, Anoopkumar-Dukie S, Perkins AV, Davey AK, Grant GD (2011) Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch Toxicol 86(2):275–284

    Article  PubMed  Google Scholar 

  19. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28:727–732

    Article  CAS  Google Scholar 

  20. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93

    Article  CAS  PubMed  Google Scholar 

  21. Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132–141

    Article  CAS  PubMed  Google Scholar 

  22. Puyal J, Vaslin A, Mottier V, Clarke PG (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66:378–389

    Article  CAS  PubMed  Google Scholar 

  23. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  CAS  PubMed  Google Scholar 

  24. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E et al (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762

    Article  PubMed  Google Scholar 

  25. Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2:49–51

    CAS  PubMed  Google Scholar 

  26. Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rangaraju S, Verrier JD, Madorsky I, Nicks J, Dunn WJ, Notterpek L (2010) Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 30:11388–11397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  CAS  PubMed  Google Scholar 

  29. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA et al (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343–359

    Article  CAS  PubMed  Google Scholar 

  30. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  Google Scholar 

  32. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  34. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gupta S, Knowlton AA (2005) HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9:51–58

    Article  CAS  PubMed  Google Scholar 

  36. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95:4997–5002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6:1837–1849

    Article  CAS  PubMed  Google Scholar 

  38. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhivotovsky B, Orrenius S (2010) Cell cycle and cell death in disease: past, present and future. J Intern Med 268:395–409

    Article  CAS  PubMed  Google Scholar 

  40. Barnett A, Brewer GJ (2011) Autophagy in aging and Alzheimer’s disease: pathologic or protective? J Alzheimers Dis 25:385–394

    PubMed Central  PubMed  Google Scholar 

  41. Sasaki S (2011) Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 70:349–359

    Article  PubMed  Google Scholar 

  42. Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ et al (2011) Clonal production and organization of inhibitory interneurons in the neocortex. Science 334:480–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Korn MJ, Koppel SJ, Cramer KS (2011) Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem. PLoS One 6:e27383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6:e27881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Science Foundation of China (No. 30973068) and General projects of the Twelve-Fifth Scientific Plan in Army Medical Science and Technology (No. CWS11J101).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihai Zhang.

Additional information

Peifu Tang and Hongping Hou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, P., Hou, H., Zhang, L. et al. Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats. Mol Neurobiol 49, 276–287 (2014). https://doi.org/10.1007/s12035-013-8518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8518-3

Keywords

Navigation