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Abstract Apoptosis was a term introduced in 1972 to
distinguish a mode of cell death with characteristic
morphology and apparently regulated, endogenously driven
mechanisms. The effector processes responsible for apo-
ptosis are now mostly well known, involving activation of
caspases and Bcl2 family members in response to a wide
variety of physiological and injury-induced signals. The
factors that lead of the decision to activate apoptosis as
opposed to adaptive responses to such signals (e.g.
autophagy, cycle arrest, protein synthesis shutoff) are less
well understood, but the intranuclear Promyelocytic
Leukaemia Body (PML body) may create a local microen-
vironment in which the audit of DNA damage may occur,
informed by the extent of the damage, the adequacy of its
repair and other aspects of cell status.
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Introduction

Over the past two or three decades, a clear and seemingly
comprehensive picture of the biology of apoptosis has
emerged. Originally identified through its characteristic
cytological morphology [1], this mode of death is now
known to result from activation of a common mechanism
relevant in both physiological and pathological circum-
stances [2, 3]. At the heart of this mechanism lie two
families of proteins, the caspases and members of the Bcl2

extended family. Caspases are a unique and closely related
set of proteases, so called because of the cysteine at their
active site, and the tightly defined four-amino-acid motif
(including aspartate at positions 1 and 4) at their target site.
The Bcl2 family is so called because of the relationship of
its members to the B-cell lymphoma oncogene whose
discovery led eventually to the identification of most of the
other family members, but at the molecular level this family
is remarkably diverse.

Caspase Activation Underlies Most of the Phenotype
of Apoptosis

The caspases form a cascade in which initiator caspases are
activated by lethal stimuli arising either at the cell
membrane as a result of cytokine–receptor binding, or
within the cell, in relation to internally determined signals,
often generated in the micro-environment of particular
organelles. Thus, caspases 8 and 10 are activated when
specific extracellular ligands of the tumour necrosis factor
family bind to their receptors (the extrinsic apoptosis
pathway), whilst caspase 9 is activated at the mitochondrial
membrane (the intrinsic pathway). These initiator caspases
activate (by cleavage at their specific target sites) a set of
effector caspases, notably caspases 3, 6 and 7, which then
synchronously cleave proteins in many cell compartments.
This cleavage event is responsible for most of the
morphological changes by which apoptosis was originally
identified. Thus, the violent blebbing of apoptotic cells is
attributable to activation, by caspase cleavage, of the rho-
kinase isoform ROCK-1 [4]. Caspase substrates also
include cytoskeleton proteins [5] and the focal adhesion
kinase (FAK) [6], whose cleavage accounts for the loss of
substratum contact and the loss and rounding up of the
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dying cell. Some caspase substrates form part of complex
pathways with several interacting members. One striking
example is the cytoplasmic chaperone inhibitor of caspase-
activated DNAse (ICAD), whose cleavage releases a
nuclease from its anchor within the cytoplasm and permits
its unfolding to reveal a nuclear localisation signal [7]. The
unfolded active nuclease thus arrives within the nucleus
where it is responsible for the cleavage and much of the
condensation of nuclear DNA. Caspases may also be
responsible for the release of nucleotides from apoptotic
cells that serve as homing signals for the macrophages that
ultimately engulf them [8]. Interestingly, the 4-amino-acid
motifs that characterise caspase cleavage sites in scores if not
hundreds of proteins [9] appear to be conserved between
species as widely divergent as Drosophila, Xenopus and
mammals [10, 11]. Thus, the activation of caspases is central
to the synchronised molecular events that occur in apoptosis,
although it must be said that it is still unclear whether some
of these events are more “necessary and sufficient” than
others in effecting the death of cells. A hint that this might be
so is given by the observation that different members of the
cascade appear to be preferentially selected in particular cell
types and also show substrate specificity [12, 13].

The Bcl2 Family Members Define Thresholds
for Apoptosis

The Bcl2 family members [2, 3, 14] are united through their
possession of homologous domains responsible for protein–
protein interactions amongst the family members. Bcl2
itself and its closest relatives (e.g. BclXL) possess four
such domains, BH 1, 2 and 4, defining a hydrophobic
groove within the molecule, and BH3, a short (8–12 amino

acid) region that binds within that groove. These members
of the family support cell survival, whilst the shared BH
domains permit interaction with two powerful pro-death
molecules, Bax and Bak, through the formation of hetero-
dimers. Bax and Bak (which possess the BH1-3 domains
but not BH4) can also form homo-oligomers and, in this
configuration, can create a wide diameter pore through cell
membranes [15]. This event has been extensively studied in
the mitochondrial membrane, where such pores allow
escape of critical molecules from the intermembranous
space to the immediate peri-mitochondrial microenviron-
ment. Amongst the escaping molecules are cytochrome c
and dATP, which together activate caspase 9, held in this
microenvironment by its association with a protein (with
remarkable, seven-fold symmetry) called apaf-1. The
concentrations of Bax or Bak relative to the Bcl2-BclXL
or other pro-survival family members thus determine the
probability that this dramatic rise in mitochondrial perme-
ability will occur, activating the intrinsic pathway.

The remaining members of the Bcl2 family possess only
the BH3 domain as their region of homology with the rest
of this extended family. These proteins (bid, bad, bim, bmf
and others) all promote death. Although their precise mode
of action is still disputed, a likely explanation can be found
in their high affinity of binding, via the BH3 domain, to the
hydrophobic groove in Bcl2 and BclXL [14, 16]. A rise in
cell concentration of BH3-only proteins will therefore
create conditions in the immediate vicinity of the mito-
chondrial outer membrane that favour formation of bax/bak
oligomer formation and the genesis of the high-
permeability pores. This widely diverse family of “BH3-
only” proteins appears to provide signals in response to a
variety of injuries (Fig. 1). Thus, they act as sensors of
“danger” or “stress” conditions.
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only members of the BCl2
family with the bax/bak–BCl2/
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drial membranes, relative to a
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Other Modes of Cell Death Exist

Apoptosis is widely observed in metazoans, but it is not the
only route to cell death, even in the context of development.
Moreover, even in organisms in which members of both the
caspase and Bcl2 family are present constitutively, cells can
sometimes undergo developmentally determined death
despite experimental inhibition of caspases, showing that
in these circumstances, the event of death must be
determined by elements upstream of (or at least parallel
to) the caspases themselves [17]. Interestingly, however, the
structural changes in such dying cells differ from those of
apoptosis and appear rather to represent loss of cellular
volume homeostasis [18–20].

Despite the detail in which apoptosis is now understood,
several major questions remain. Amongst these are two that
are the subjects of the remainder of this short review. Both
relate to apoptosis following cell injury. Under these
circumstances, both in vivo and in vitro, it is usual to
observe some cells entering apoptosis while their neigh-
bours do not, despite being exposed to very similar lethal
stimuli. The surviving cells often exhibit adaptive reactions
that sustain cell life even in these unfavourable circum-
stances [21–23]. The questions therefore arise: first, what is
the intracellular audit that determines which cells are
selected for life, others for death? And second, what is the
switch that determines that these adaptive changes are
abandoned in favour of apoptosis? This article attempts to
address both these questions, using cell damage by ionising
radiation (IR) as the paradigm. The questions themselves,
however, and hopefully their answers, are likely to be of
general import.

The Search for an Intracellular Audit of DNA Damage

It is often assumed that apoptosis is initiated if the damage is
“too severe to be repaired” or if the timescale for complete
repair is “too long”. Although these statements seem probable,
there is little evidence for the mechanism responsible. There
is, however, excellent evidence that DNA repair is initiated
swiftly after DNA damage by IR in cells destined to die by
apoptosis a few hours later and is nearly complete before
apoptosis is initiated. Thus, for example, comet assays show
nearly complete restoration of supercoiled DNAwithin 1 hour
of irradiation of bone-marrow-derived pre-B cells, whilst
apoptosis is not evident until some 2 to 4 hours later, even
under conditions in which more than 90% of the cells
eventually die [24]. This suggests either that some lesion
other than DNA breakage itself is involved in signalling
apoptosis, or (following the basic design of other check-
points) the defining event is the repair of the last persisting
double-strand break (DSB), and failed completion of this,

within some critical “window” in time, or perhaps in some
other intracellular condition, spells death.

We argued that if the audit of cell injury following IR is
based on DNA damage, its location is likely to be close to
the damage itself, i.e. in an intranuclear site. This
immediately contrasts with current paradigms, which, as
outlined earlier, place the signals for apoptosis either at
the cell membrane or in the vicinity of mitochondria. To be
credible, a candidate audit mechanism for DNA damage
would be expected to be responsive in a dose-dependent
manner to the intranuclear DNA damage itself. Moreover, the
audit apparatus would be expected to demonstrate a dose-
related qualitative transition when responding to lethal as
opposed to survivable levels of damage.

One candidate with these properties has been described—
the Promyelocytic Leukaemia Nuclear Domain (PML-
ND) or PML body. PML bodies are intranuclear particles
consisting of a shell of around 0.2-μm diameter,
constituted of polymerised sumoylated PML protein,
together with a wide array of cargo proteins [25]. Most
cells in culture have around 10 PML bodies per nucleus,
although the precise number in any one population is
influenced by cell type and position in the cell cycle.
Notably, however, the number of PML bodies per nucleus
rises dramatically following DNA damage, in human
fibroblasts often by some 200% to 300% [26–29]. This
increase peaks around 4 to 8 hours after DNA damage,
reverting to near normal values by 12 to 24 hours if the
IR dose is low (≤2.5 Gy), but remaining high if the IR
dose is high (≥5 Gy). Interestingly, this transition
corresponds to the transition between sublethal and lethal
doses at least in terms of “reproductive death” (i.e.
irreversible replication arrest). Another striking feature of
PML bodies is their intranuclear location relative to the
foci at which DNA damage and repair take place (IR-
induced foci, or IRIFs). Initially following radiation,
there is no particular spatial relationship between PML
bodies and IRIFs, but within a few hours, most PML
bodies are closely adjacent to IRIFs [26, 29] (Fig. 2).
These features suggest, but do not prove, that the surface
of PML- bodies is capable of identifying the status of
damaged DNA as it undergoes repair.

The mechanism underlying this alteration in number of
the bodies is not known for certain, but is considered to be
the remit of protein modification rather than transcription or
translational events, since it is not affected by blockade of
protein synthesis by, for example, cycloheximide. Some
data suggest that larger bodies split or bud to create
increased numbers of smaller ones [30]. This might
influence their capacity to permit interaction of their cargo
proteins, or perhaps might transiently increase the reactive
surface available for such interactions. However, this
interpretation does not exclude other possibilities, such as
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PML-ND turnover, perhaps through differential sumoyla-
tion, in the vicinity of DSBs.

These observations are at least consistent with the
hypothesis that PML bodies are a part of the nuclear
response to DNA injury. Additional evidence comes from
study of the nature of the cargo proteins, which include
several involved in the response to injury, such as p53
(whose activation by acetylation and stabilisation by mdm2
appear to be facilitated by the presence of PML protein)
[31–35], Blm (a helicase critical for completion of DSB
repair) [36, 37] and Daxx (a modulator of apoptosis) [38].
Finally, and most significantly, tissues from animals
genetically deficient in PML show attenuated apoptosis in
response to a variety of lethal stimuli [39].

How might PML bodies become “aware” that the
nucleus has sustained DNA damage?” The answer to this
important question is not known, but a clue may be
offered from consideration of the topographic molecular
rearrangements that take place within the damaged

nucleus. DSBs are swiftly reorganised by the DNA-
dependent kinase ataxia telangiectasia mutated (ATM),
which is phosphorylated close to the break site. Sub-
strates of this kinase include many of the molecules that
participate in DNA repair, such as the MRN complex,
p53 BP1 and BRCA1 [40–42]. Detailed study of nuclear
topology shows that these ATM substrates are activated in
chromatin surrounding the break site, in association with
the modified histone γH2AX [43]. Phosphorylation of this
probably leads to the unwinding of chromatin that
facilitates access of the repair molecules to the break site.
A further class of repair-associated molecule is typified by
the checkpoint-related kinases Chk-1 and Chk-2, which
move freely throughout the damaged nucleus and act both
as substrate for and a stimulus to some of the other
phosphorylation events involved in repair. Interestingly,
Chk-2-deficient cells show a grossly retarded PML
response to DNA injury, suggesting that Chk-2 may be
part of the signal that informs PML of the intranuclear
presence of DNA DSBs.

PML

pATM DAPI

Fig. 2 Nucleus of a cell injured
by IR 4 hours previously,
showing the juxtaposition of IR
induced foci (identified by an
antibody to ATM, labelled red)
with PML bodies (identified by
an antibody to PML, labelled
green). Courtesy of Dr. Brian
Ferguson
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The Switch From Adaptive Survival to Apoptosis

A still broader question asks what the relationship might be
between the adaptive responses that support cell viability
following injury and the homeostatic regulatory response that
commits injured cells to death. The adaptive responses are
heterogeneous, in that very different “stress” stimuli initiate
stimulus-specific detection and immediate response mecha-
nisms (Fig. 3). It is clear that, for example, quite distinctive
intracellular networks are engaged in the reaction to
endoplasmic reticulum stress (the unfolded protein response)
[44–46], viral infection (including the interferon response)
[47] and heat shock [48–50]. However, the ultimate cellular
reactions appear to represent a common pathway, in which
autophagy, protein synthesis shutoff and inhibition of DNA
replication are conspicuous features. Although knowledge of
the driving mechanism behind each of these fundamental
adaptive responses to injury is still incomplete, a picture is
emerging in which the PI3 kinase/Akt pathway plays a
significant role in all three (Fig. 4). Interestingly, this
pathway is also involved in the initiation of apoptosis and
may include an intranuclear element that incorporates PML
bodies in critical sites determining the outcome of Akt-
driven phosphorylation [51].

One possible method to over-ride adaptive responses
would be to recruit the innate immune system's killing power,
through exposure of a “stress-dependent” or “danger” signal
on the cell surface. One known example of this is the
expression of the immunoglobulin-like molecules mic A and
mic B on the surface of stressed cells [52]. These molecules
(which are not expressed in this way in the absence of
cellular stress) engage with NK cell receptors and permit
activation of the latter's killing mechanism. It seems
improbable, however, that a process as important as switch-
ing from survival to death should depend exclusively on a
non-cell autonomous strategy such as NK cell activation.

Cell autonomous switches from adaptive responses to
apoptosis in injured cells also exist. One example is the
initiation of apoptosis following extremes of endoplasmic
reticulum stress. Here, the transcription factor CHOP (for
C/EBP homologous protein), a factor in the unfolded
protein response, participates in the adaptation to protein
overload, being transcriptionally activated in response to
inducers of the unfolded protein response (ATF4, ATF6,
XBP1) and also to ATF2, a molecular sensor for hypoxia
and amino acid starvation. Over-expression of CHOP,
however, initiates apoptosis [53, 54]. A mechanism of this
type, in which signals emanating from within the stressed
cell are both adaptive and pro-apoptotic, can be readily
fitted into scenarios in which the permit to activate
apoptosis is regulated through modification of the cell's
apoptosis threshold—as described for BH3-only proteins or
PML bodies above.
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