Skip to main content

Advertisement

Log in

Carbon-doped titania-polymethylsilsesquioxane aerogels for the photocatalytic degradation of antibiotics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Removal of antibiotics detected in wastewater or natural aquatic systems by regular municipal treatment is challenging. Photocatalysis is considered to be the most well-known and green strategy for such removal. However, the catalytic efficiency is restricted by UV radiation dependence, fast electron-hole recombination, and low porosity/surface area of the photocatalyst. In this study, we have developed a highly porous anatase TiO2-polymethylsilsesquioxane (PMSQ) aerogel with nonmetal carbon dopant, which can simultaneously enhance the adsorption ability and visible light photo-activity. And tetracycline hydrochloride (TCH) was selected as a model antibiotic. A high surface area (747 g cm−3) C-TiO2-PMSQ aerogel can remove 91% TCH within 180 min under visible light. But the removal needs to be in an isopropyl alcohol/water co-solvent, due to the intrinsic hydrophobicity of PMSQ. After a heat treatment under 400°C, the surface area of C-TiO2-PMSQ aerogel decreases to 618 g cm−3, and the sample loses its hydrophobicity, the removal of TCH can be in aqueous condition and the efficiency increases to 98%. Moreover, both catalysts can be recycled 7 times and still maintain high removal efficiency (85 and 64% remained for hydrophobic and hydrophilic gels, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B et al 2002 Environ. Sci. Technol. 36 1202

    Article  CAS  Google Scholar 

  2. Anderson P D, D’Aco V J, Shanahan P, Chapra S C, Buzby M E, Cunningham V L et al 2004 Environ. Sci. Technol. 38 838

    Article  CAS  Google Scholar 

  3. Carballa M, Omil F, Lema J M, Llompart M A, García-Jares C and Rodríguez I et al 2004 Water Res. 38 2918

  4. Nikolaou A, Meric S and Fatta D 2007 Anal. Bioanal. Chem. 387 1225

    Article  CAS  Google Scholar 

  5. Rabiet M, Togola A, Brissaud F, Seidel J-L, Budzinski H and Elbaz-Poulichet F 2006 Environ. Sci. Technol. 40 5282

    Article  CAS  Google Scholar 

  6. Brandt K K, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T et al 2015 Environ. Intern. 85 189

    Article  CAS  Google Scholar 

  7. Liu M-K, Liu Y-Y, Bao D-D, Zhu G, Yang G-H, Geng J-F et al 2017 Sci. Rep. 7 43717

    Article  Google Scholar 

  8. Walter M V and Vennes J W 1985 Appl. Environ. Micro. 50 930

    Article  CAS  Google Scholar 

  9. Elmolla E S and Chaudhuri M 2010 Desalination 252 46

    Article  CAS  Google Scholar 

  10. Gomes J, Costa R, Quinta-Ferreira R M and Martins R C 2017 Sci. Total Environ. 586 265

    Article  CAS  Google Scholar 

  11. Ricardo I A, Paiva V A, Paniagua C E and Trovó A G 2018 Chem. Eng. J. 347 763

    Article  CAS  Google Scholar 

  12. Liu X, Yang D, Zhou Y, Zhang J, Luo L, Meng S et al 2017 Chemosphere 182 306

    Article  CAS  Google Scholar 

  13. Zhou Y, Liu X, Zhao Y, Luo S, Wang L, Yang Y et al 2018 J. Catal. 365 184

    Article  CAS  Google Scholar 

  14. Malik P 2004 J. Hazard Mater. 113 81

    Article  CAS  Google Scholar 

  15. Gomez V, Larrechi M and Callao M 2007 Chemosphere 69 1151

    Article  CAS  Google Scholar 

  16. Abid M F, Zablouk M A and Abid-Alameer A M 2012 Iran. J. Environ. Health Sci. Eng. 9 17

    Article  CAS  Google Scholar 

  17. Al-Bastaki N 2004 Chem. Eng. Process. 43 1561

    Article  CAS  Google Scholar 

  18. Chu W, Choy W and So T 2007 J. Hazard Mater. 141 86

    Article  CAS  Google Scholar 

  19. Vorontsov A V, Savinov E N and Smirniotis P G 2000 Chem. Eng. Sci. 55 5089

    Article  CAS  Google Scholar 

  20. Mas D, Pichat P, Guillard C and Luck F 2005 Ozone Sci. Eng. 27 311

    Article  CAS  Google Scholar 

  21. Guillard C, Disdier J, Herrmann J-M, Lehaut C, Chopin T, Malato S et al 1999 Catal. Today 54 217

    Article  CAS  Google Scholar 

  22. Ku Y, Lee Y-C and Wang W-Y 2006 J. Hazard Mater. 138 350

    Article  CAS  Google Scholar 

  23. Mrowetz M, Pirola C and Selli E 2003 Ultrason Sonochem. 10 247

    Article  CAS  Google Scholar 

  24. Zainal Z, Hui L K, Hussein M Z, Taufiq-Yap Y H, Abdullah A H and Ramli I 2005 J Hazard Mater. 125 113

    Article  CAS  Google Scholar 

  25. Essam T, Amin M A, El Tayeb O, Mattiasson B and Guieysse B 2007 Chemosphere 66 2201

    Article  CAS  Google Scholar 

  26. Xu H, Jia J, Zhao S, Chen P, Xia Q, Wu J et al 2018 ChemistrySelect. 3 10483

    Article  CAS  Google Scholar 

  27. Haque M and Muneer M 2003 J. Environ. Manag. 69 169

    Article  CAS  Google Scholar 

  28. Singh H K, Saquib M, Haque M M, Muneer M and Bahnemann D W 2007 J. Mol. Catal. A Chem. 264 66

    Article  CAS  Google Scholar 

  29. Pelizzetti E and Minero C 1993 Electrochim. Acta 38 47

    Article  CAS  Google Scholar 

  30. Yang L, Liya E Y and Ray M B 2008 Water Res. 42 3480

    Article  CAS  Google Scholar 

  31. Sioi M, Bolosis A, Kostopoulou E and Poulios I 2006 J. Photochem. Photobiol. A 184 18

    Article  CAS  Google Scholar 

  32. Hong Y, Li C, Yin B, Li D, Zhang Z, Mao B et al 2018 Chem. Eng. J. 338 137

    Article  CAS  Google Scholar 

  33. Wen M, Xiong T, Zang Z, Wei W, Tang X and Dong F 2016 Opt. Express 24 10205

    Article  CAS  Google Scholar 

  34. Subramanian V, Wolf E and Kamat P V 2001 J. Phys. Chem. B 105 11439

    Article  CAS  Google Scholar 

  35. Hirakawa T and Kamat P V 2005 J. Am. Chem. Soc. 127 3928

    Article  CAS  Google Scholar 

  36. Xin B, Jing L, Ren Z, Wang B and Fu H 2005 J. Phys. Chem. B. 109 2805

    Article  CAS  Google Scholar 

  37. Cong Y, Zhang J, Chen F, Anpo M and He D 2007 J. Phys. Chem. C 111 10618

    Article  CAS  Google Scholar 

  38. Anderson C and Bard A J 1995 J. Phys. Chem. 99 9882

    Article  CAS  Google Scholar 

  39. Zhang J-J, Liu X, Ye T, Zheng G-P, Zheng X-C, Liu P et al 2017 J. Alloys Compd. 698 819

    Article  CAS  Google Scholar 

  40. Zhang J-J, Qi P, Li J, Zheng X-C, Liu P, Guan X-X et al 2018 J. Ind. Eng. Chem. 61 407

    Article  CAS  Google Scholar 

  41. Jiang D, Wang T, Xu Q, Li D, Meng S and Chen M 2017 Appl. Catal. B 201 617

    Article  CAS  Google Scholar 

  42. Brinker C J and Scherer G W 1990 Chapter 14 Applications, Sol-Gel Science (San Diego: Academic Press) p 838

    Book  Google Scholar 

  43. Satoh S, Susa K and Matsuyama I 1992 J. Non-Cryst. Solids 146 121

    Article  CAS  Google Scholar 

  44. Salvado I M and Navarro J F 1992 J. Non-Cryst. Solids 147 256

    Article  Google Scholar 

  45. Ramirez-Del-Solar M, De la Rosa-Fox N, Esquivias L and Zarzycki J 1990 J. Non-Cryst. Solids 121 84

    Article  CAS  Google Scholar 

  46. Frank A J, Willner I, Goren Z and Degani Y 1987 J. Am. Chem. Soc. 109 3568

    Article  CAS  Google Scholar 

  47. Matthews R W 1987 J. Phys. Chem. 91 3328

    Article  CAS  Google Scholar 

  48. Matthews R W 1988 J. Catal. 113 549

    Article  CAS  Google Scholar 

  49. Minero C, Catozzo F and Pelizzetti E 1992 Langmuir 8 481

    Article  CAS  Google Scholar 

  50. Zhao S, Xu H, Wang L, Zhu P, Risen W M Jr and William Suggs J 2013 Microporous Mesoporous Mater. 171 147

    Article  CAS  Google Scholar 

  51. Li Y, Bastakoti B P, Imura M, Hwang S M, Sun Z, Kim J H et al 2014 Chem. Eur. J. 20 6027

    Article  CAS  Google Scholar 

  52. Lyu J, Gao J, Zhang M, Fu Q, Sun L, Hu S et al 2017 Appl. Catal. B Environ. 202 664

    Article  CAS  Google Scholar 

  53. Lyu J, Shao J, Wang Y, Qiu Y, Li J, Li T et al 2019 Chem. Eng. J. 358 614

    Article  CAS  Google Scholar 

  54. Zhao S, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A et al 2020 Nature 584 387

    Article  CAS  Google Scholar 

  55. Zhao S, Manic M S, Ruiz-Gonzalez F and Koebel M M 2015 in The sol-gel handbook (Weihneim: Wiley-VCH Verlag GmbH & Co. KGaA) p 519

  56. Stojanovic A, Zhao S, Angelica E, Malfait W J and Koebel M M 2019 J. Sol-Gel Sci. Tech. 90 57

    Article  CAS  Google Scholar 

  57. Zu G, Kanamori K, Maeno A, Kaji H and Nakanishi K 2018 Angew. Chem. Int. Ed. 130 9870

    Article  Google Scholar 

  58. Maleki H, Whitmore L and Hüsing N 2018 J. Mater. Chem. A 6 12598

    Article  CAS  Google Scholar 

  59. Zu G, Wang X, Kanamori K and Nakanishi K 2020 J. Mater. Chem. B 8 4883

    Article  CAS  Google Scholar 

  60. Sanda S, Kanamori K, Takei T and Tashiro K 2018 ChemNanoMat. 4 52

    Article  CAS  Google Scholar 

  61. Hayase G, Kugimiya K, Ogawa M, Kodera Y, Kanamori K and Nakanishi K 2014 J. Mater. Chem. A 2 6525

    Article  CAS  Google Scholar 

  62. Hayase G, Kanamori K, Maeno A, Kaji H and Nakanishi K 2016 J. Non-Cryst. Solids 434 115

    Article  CAS  Google Scholar 

  63. Brunauer S, Emmett P H and Teller E 1938 J. Am. Chem. Soc. 60 309

    Article  CAS  Google Scholar 

  64. Barrett E P, Joyner L G and Halenda P P 1951 J. Am. Chem. Soc. 73 373

    Article  CAS  Google Scholar 

  65. Zheng M, Zhu P, Wu J, Xu H and Zhao S 2015 J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 908

  66. Frusteri F, Leonardi V, Vasta S and Restuccia G 2005 Appl. Therm. Eng. 25 1623

    Article  CAS  Google Scholar 

  67. Karaipekli A, Sari A and Kaygusuz K 2007 Renew. Energy 32 2201

    Article  CAS  Google Scholar 

  68. Nian J-N and Teng H 2006 J. Phys. Chem. B 110 4193

    Article  CAS  Google Scholar 

  69. Tsega M and Dejene F 2017 Heliyon 3 e00246

    Article  Google Scholar 

  70. Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L et al 2010 Chemistry 16 6243

    Article  CAS  Google Scholar 

  71. Cheng S, Liu X, Yun S, Luo H and Gao Y 2014 Ceram. Int. 40 13781

    Article  CAS  Google Scholar 

  72. Zhang H-X, He X-D and He F 2009 J. Alloys Compd. 469 366

    Article  CAS  Google Scholar 

  73. Jiang D, Xu Y, Hou B, Wu D and Sun Y 2007 J. Solid State Chem. 180 1787

    Article  CAS  Google Scholar 

  74. Hamad H, Abd El-Latif M, Kashyout AE-H, Sadik W and Feteha M 2015 New J. Chem. 39 3116

    Article  CAS  Google Scholar 

  75. Sima U, Shiju A, Frank T, Shobhit P, Valerian C, Shukla P K et al 2014 RSC Adv. 4 59890

    Article  CAS  Google Scholar 

  76. Zhang J, Grabstanowicz L R, Gao S, Hosmane N S, Huang B, Dai Y et al 2012 Catal. Sci. Technol. 2 390

    Article  CAS  Google Scholar 

  77. Lin Z, Liu P, Yan J and Yang G 2015 J. Mater. Chem. A 3 14853

    Article  CAS  Google Scholar 

  78. Parale V G, Lee K-Y, Park H-H, Parale V G, Lee K-Y and Park H-H 2017 J. Korean Ceram. Soc. 54 184

    Article  CAS  Google Scholar 

  79. Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L et al 2017 Appl. Catal. B 210 352

    Article  CAS  Google Scholar 

  80. Yang J, Wang X, Chen Y, Dai J and Sun S 2015 RSC Adv. 5 9771

    Article  CAS  Google Scholar 

  81. Fu H, Zhang L, Zhang S, Zhu Y and Zhao J 2006 J. Phys. Chem. B 110 3061

    Article  CAS  Google Scholar 

Download references

Acknowledgement

HX acknowledges the financial support from Science and Technology Plan Project of Liaoning Province (Project: 2013225021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ding.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Ding, Y., Yang, S. et al. Carbon-doped titania-polymethylsilsesquioxane aerogels for the photocatalytic degradation of antibiotics. Bull Mater Sci 44, 226 (2021). https://doi.org/10.1007/s12034-021-02510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02510-6

Keywords

Navigation