Skip to main content
Log in

Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Design and production of α-MnO2 structures over carbonaceous material is considered as potential strategy for improving electrochemical performance of supercapacitors. This study describes the development of a simple method for hydrothermal synthesis of a composite material with directly anchoring α-MnO2 over a nanographite matrix. The nanographite matrix was obtained by electrochemical exfoliation of graphite rods (from depleted Leclanché batteries) and characterized by X-ray diffraction (XRD), Raman spectroscopy and field emission gun-scanning electron microscopy (FEG-SEM). The obtained results indicated that nanographite produced presented low levels of defects with a mild oxidized surface. This nanographite was used as anchoring base for producing MnO2 particles, using the developed hydrothermal procedure. For paralleling, pure MnO2 particles were also produced in same conditions. The prepared materials were characterized by XRD, Raman spectroscopy and FEG-SEM. XRD patterns proved formation of α-MnO2 for pure and composite materials. Morphological characterization indicated the formation of nanoneedles in both situations; however, in the composite the α-MnO2 was produced as smaller nanoneedles homogeneously spread over the nanographite surface. Raman spectra showed that the desired composition was achieved. Electrochemical characterization showed that the adopted strategy was successful in producing materials with improved pseudocapacitive performance, high reversibility, presenting specific capacitance of 279.8 F g−1 and coulombic efficiency of 99.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Xu C, Yang H, Li Y, Wang J and Lu X 2020 ChemElectroChem 7 586

    Article  CAS  Google Scholar 

  2. González A, Goikolea E, Barrena J A and Mysyk R 2016 Renew. Sustain. Energy Rev. 58 1189

    Article  Google Scholar 

  3. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  4. Pandolfo A G and Hollenkamp A F 2006 J. Power Sources 157 11

    Article  CAS  Google Scholar 

  5. Liu H-J, Wang X-M, Cui W-J, Dou Y-Q, Zhao D-Y and Xia Y-Y 2010 J. Mater. Chem. 20 4223

    Article  CAS  Google Scholar 

  6. Subramanian V, Zhu H, Vajtai R, Ajayan P M and Wei B 2005 J. Phys. Chem. B 109 20207

    Article  CAS  Google Scholar 

  7. Mondal S K and Munichandraiah N 2008 J. Power Sources 175 657

    Article  CAS  Google Scholar 

  8. Wang K, Huang J and Wei Z 2010 J. Phys. Chem. C 114 8062

    Article  CAS  Google Scholar 

  9. Sun W, Zheng R and Chen X 2010 J. Power Sources 195 7120

    Article  CAS  Google Scholar 

  10. Zhang L, Du G, Zhou B and Wang L 2014 Ceram. Int. 40 1241

    Article  CAS  Google Scholar 

  11. Han W, Ren L, Qi X, Liu Y, Wei X, Huang Z et al 2014 Appl. Surf. Sci. 299 12

    Article  CAS  Google Scholar 

  12. Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L et al 2014 Ceram. Int. 40 8189

    Article  CAS  Google Scholar 

  13. Ezeigwe E R, Tan M T T, Khiew P S and Siong C W 2015 Ceram. Int. 41 11418

    Article  CAS  Google Scholar 

  14. Mahmoudian M R, Alias Y, Basirun W J, Woi P M and Sookhakian M 2014 Sens. Actuators B Chem. 201 526

    Article  CAS  Google Scholar 

  15. Lee X J, Hiew B Y Z, Lai K C, Lee L Y, Gan S, Thangalazhy-Gopakumar S et al 2019 J. Taiwan Inst. Chem. Eng. 98 163

    Article  CAS  Google Scholar 

  16. Li J, Yan H, Dang D, Wei W and Meng L 2019 J. Colloid Interface Sci. 535 92

    Article  CAS  Google Scholar 

  17. Chen C-H, Yang S-W, Chuang M-C, Woon W-Y and Su C-Y 2015 Nanoscale 7 15362

    Article  CAS  Google Scholar 

  18. Radoń A and Łukowiec D 2017 Micro Nano Lett. 12 955

    Article  Google Scholar 

  19. Estevam R B, Ferreira R T, Bischof A B-H, dos Santos F S, Santos C S, Fujiwara S T et al 2015 Surf. Coat. Technol. 275 2

    Article  CAS  Google Scholar 

  20. Oliveira R D, Santos C S, Ferreira R T, Marciniuk G, Marchesi L F, Garcia J R et al 2017 Appl. Surf. Sci. 425 16

    Article  CAS  Google Scholar 

  21. Wu Z S, Wang D W, Ren W, Zhao J, Zhou G, Li F et al 2010 Adv. Funct. Mater. 20 3595

    Article  CAS  Google Scholar 

  22. Choi H J, Jung S M, Seo J M, Chang D W, Dai L and Baek J B 2012 Nano Energy 1 534

    Article  CAS  Google Scholar 

  23. Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y et al 2016 J. Power Sources 306 481

    Article  CAS  Google Scholar 

  24. Ozcan S, Tokur M, Cetinkaya T, Guler A, Uysal M, Guler M O et al 2016 Solid State Ion. 286 34

    Article  CAS  Google Scholar 

  25. Wei Z H, Zhao T S, Zhu X B and Tan P 2016 J. Power Sources 306 724

    Article  CAS  Google Scholar 

  26. Zhang W, Zeng C, Kong M, Pan Y and Yang Z 2012 Sens. Actuators B Chem. 162 292

    Article  CAS  Google Scholar 

  27. Tian X, Yang L, Qing X, Yu K and Wang X 2015 Sens. Actuators B Chem. 207 34

    Article  CAS  Google Scholar 

  28. Zhang X, Wang T, Jiang C, Zhang F, Li W and Tang Y 2016 Electrochim. Acta 187 465

    Article  CAS  Google Scholar 

  29. Li P C, Hu C C, Noda H and Habazaki H 2015 J. Power Sources 298 102

    Article  CAS  Google Scholar 

  30. Lee J, Hwang T, Lee Y, Lee J K and Choi W 2015 Mater. Lett. 158 132

    Article  CAS  Google Scholar 

  31. Vinny R T, Chaitra K, Venkatesh K, Nagaraju N and Kathyayini N 2016 J. Power Sources 309 212

    Article  CAS  Google Scholar 

  32. Wang X, Luo C, Li L and Duan H 2015 J. Electroanal. Chem. 757 100

    Article  CAS  Google Scholar 

  33. Wang C, Li F, Wang Y, Qu H, Yi X, Lu Y et al 2015 J. Alloys Compd. 634 12

    Article  CAS  Google Scholar 

  34. Ghodbane O, Pascal J-L and Favier F 2009 ACS Appl. Mater. Interfaces 1 1130

    Article  CAS  Google Scholar 

  35. Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406

    Article  CAS  Google Scholar 

  36. Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L et al 2012 J. Power Sources 198 428

    Article  CAS  Google Scholar 

  37. Cheng G, Yu L, Lan B, Sun M, Lin T, Fu Z et al 2016 Mater. Res. Bull. 75 17

    Article  CAS  Google Scholar 

  38. Patil U M, Sohn J S, Kulkarni S B, Park H G, Jung Y, Gurav K V et al 2014 Mater. Lett. 119 135

    Article  CAS  Google Scholar 

  39. Zhao X, Sánchez B M, Dobson P J and Grant P S 2011 Nanoscale 3 839

    Article  CAS  Google Scholar 

  40. Zhang Y, Liu H, Zhu Z, Wong K, Mi R, Mei J et al 2013 Electrochim. Acta 108 465

    Article  CAS  Google Scholar 

  41. Li G, Lu Y T, Lu C, Zhu M S, Zhai C Y, Du Y K et al 2015 J. Hazard. Mater. 294 201

    Article  CAS  Google Scholar 

  42. El-Deen A G, Barakat N A M and Kim H Y 2014 Desalination 344 289

    Article  CAS  Google Scholar 

  43. Chen S, Zhu J, Wu X, Han Q and Wang X 2010 ACS Nano 4 2822

    Article  CAS  Google Scholar 

  44. Dai K, Lu L, Liang C, Dai J, Liu Q, Zhang Y et al 2014 Electrochim. Acta 116 111

    Article  CAS  Google Scholar 

  45. Wu J, Huang H, Yu L and Hu J 2013 Adv. Mater. Phys. Chem. 3 201

    Article  CAS  Google Scholar 

  46. Garcia J R, Ferreira R T, Santos F S Dos, Bischof A B H and Wohnrath K 2013 Processo de obtenção de grafeno através de rota de esfoliação eletroquímica, BR 102013019478-6 A2

  47. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision A.02 (Wallingford CT: Gaussian, Inc.)

    Google Scholar 

  48. Zhang S W and Chen G Z 2008 Energy Mater. Mater. Sci. Eng. Energy Syst. 3 186

    Article  CAS  Google Scholar 

  49. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  50. Asthagiri D, Pratt L R, Paulaitis M E and Rempe S B 2004 J. Am. Chem. Soc. 126 1285

    Article  CAS  Google Scholar 

  51. Rotzinger F P 2005 J. Phys. Chem. B 109 1510

    Article  CAS  Google Scholar 

  52. Vlahović F, Perić M, Gruden-Pavlović M and Zlatar M 2015 J. Chem. Phys. 142 214111

    Article  Google Scholar 

  53. Jackson V E, Felmy A R and Dixon D A 2015 J. Phys. Chem. A 119 2926

    Article  CAS  Google Scholar 

  54. Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270

    Article  CAS  Google Scholar 

  55. Cossi M, Barone V and Robb M A 1999 J. Chem. Phys. 111 5295

    Article  CAS  Google Scholar 

  56. Cossi M, Rega N, Scalmani G and Barone V 2003 J. Comput. Chem. 24 669

    Article  CAS  Google Scholar 

  57. Milev A, Wilson M, Kannangara G S K and Tran N 2008 Mater. Chem. Phys. 111 346

    Article  CAS  Google Scholar 

  58. Santos C S, de Oliveira R D, Marchesi L F Q P and Pessôa C A 2020 Arab J. Chem. 13 3448

    Article  CAS  Google Scholar 

  59. Ivanov A V, Maksimova N V, Kamaev A O, Malakho A P and Avdeev V V 2018 Mater. Lett. 228 403

    Article  CAS  Google Scholar 

  60. Hargreaves N J and Cooper S J 2016 Cryst. Growth Des. 16 3133

    Article  CAS  Google Scholar 

  61. Gee C-M, Tseng C-C, Wu F-Y, Chang H-P, Li L-J, Hsieh Y-P et al 2013 Displays 34 315

    Article  CAS  Google Scholar 

  62. Wall M 2012 Adv. Mater. Process. 170 35

    CAS  Google Scholar 

  63. Hou Y, Cheng Y, Hobson T and Liu J 2010 Nano Lett. 10 2727

    Article  CAS  Google Scholar 

  64. Feng X, Yan Z, Chen N, Zhang Y, Ma Y, Liu X et al 2013 J. Mater. Chem. A Mater. Energy Sustain. 1 12818

    Article  CAS  Google Scholar 

  65. Duan X, Yang J, Gao H, Ma J, Jiao L and Zheng W 2012 CrystEngComm. 14 4196

    Article  CAS  Google Scholar 

  66. Zhang X, Yang W, Yang J and Evans D G 2008 J. Cryst. Growth 310 716

    Article  CAS  Google Scholar 

  67. Zhang G, Ren L, Deng L, Wang J, Kang L and Liu Z H 2014 Mater. Res. Bull. 49 577

    Article  CAS  Google Scholar 

  68. Wu Z S, Ren W, Wang D W, Li F, Liu B and Cheng H M 2010 ACS Nano 4 5835

    Article  CAS  Google Scholar 

  69. Selvakumar K, Senthil Kumar S M, Thangamuthu R, Kruthika G and Murugan P 2014 Int. J. Hydrogen Energy 39 21024

    Article  CAS  Google Scholar 

  70. Wang X and Li Y 2003 Chemistry 9 300

    Article  Google Scholar 

  71. Vijayalakshmi K, David Jereil S and Alagusundaram K 2015 Superlattices Microstruct. 85 789

    Article  CAS  Google Scholar 

  72. Gao T, Glerup M, Krumeich F, Nesper R, Fjellvâg H and Norby P 2008 J. Phys. Chem. C 112 13134

    Article  CAS  Google Scholar 

  73. Cheng S, Yang L, Chen D, Ji X, Jiang Z, Ding D et al 2014 Nano Energy 9 161

    Article  CAS  Google Scholar 

  74. Gao T, Fjellvag H and Norby P 2009 Anal. Chim. Acta 648 235

    Article  CAS  Google Scholar 

  75. Cetinkaya T, Tocoglu U, Uysal M, Guler M O and Akbulut H 2014 Microelectron. Eng. 126 54

    Article  CAS  Google Scholar 

  76. Wei M, Konishi Y, Zhou H, Sugihara H and Arakawa H 2005 Nanotechnology 16 245

    Article  CAS  Google Scholar 

  77. Wang Y, Song Y and Xia Y 2016 Chem. Soc. Rev. 45 5925

    Article  CAS  Google Scholar 

  78. Chang H-W, Lu Y-R, Chen J-L, Chen C-L, Lee J-F and Chen J-M 2015 Nanoscale 7 1725

    Article  CAS  Google Scholar 

  79. Eftekhari A 2017 Sustain. Energy Fuels 1 2053

    Article  CAS  Google Scholar 

  80. Wu D, Xie X, Zhang Y, Zhang D, Du W, Zhang X et al 2020 Front. Mater. 7 2

    Article  Google Scholar 

  81. Banda H, Périé S, Daffos B, Dubois L, Crosnier O and Simon P 2019 Electrochim. Acta 296 882

    Article  CAS  Google Scholar 

  82. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M et al 2009 J. Phys. Chem. C 113 13103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the Brazilian Funding Agency: National Council for Scientific and Technological Development (CNPq), especially through the Program INCT-2014: Organic Electronic (INEO—acronym in Portuguese), Grant no. 14/50869-6 and the financial support from Fundação Araucária (Paraná State) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarem R Garcia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciniuk, G., Ferreira, R.T., Pedroso, A.V. et al. Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation. Bull Mater Sci 44, 62 (2021). https://doi.org/10.1007/s12034-020-02336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02336-8

Keywords

Navigation