Skip to main content

Advertisement

Log in

Efficient Stable Cell Line Generation of Survivin as an In Vitro Model for Specific Functional Analysis in Apoptosis and Drug Screening

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recognizing proteins that lead to a decreased efficiency of treatment in cancer cells constitutes a main goal for biomedical and biotechnological research and applications. Establishing recombinant cells that overexpress a gene of interest stably is important for treatment studies and drug/compound screening. Survivin is an anti-apoptotic protein which can be a potential candidate for regulating cell death and survival. To investigate the association between survivin increment and apoptosis rate, survivin-reconstituted HEK (HEK-S) cell was developed as in vitro model. RT-PCR and Western blot demonstrated that survivin was constitutively overexpressed in HEK-S cells. Both morphological observation and survival assay showed that HEK-S cells were significantly resistant to apoptotic stimuli. Survivin overexpression led to a decrease in caspase 3/7 activity, whereas YM155 led to a corresponding enhance of caspase activity. ROS level was decreased but ATP content increased in HEK-S cells. Also, HEK-S showed less red- fluorescence and reduced cell proliferation compared to HEK after stimulation. Resistance to laser irradiation was clearly visible as compared with control. Moreover, scratching analysis demonstrated the ability of survivin to cause neighboring cells to increase resistance to drug, whereas YM155 enhanced apoptotic rate and declined invasion in HEK-S cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  2. GBD. (2016). Causes of Death Collaborators (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 1151–1210. https://doi.org/10.1016/S0140-6736(18)32203-7

    Article  Google Scholar 

  3. Deveraux, Q. L., & Reed, J. C. (1999). IAP family proteins-suppressors of apoptosis. Genes & Development, 13, 239–252.

    Article  CAS  Google Scholar 

  4. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  CAS  Google Scholar 

  5. Green, D. R., & Llambi, F. (2015). Cell death signaling. Cold Spring Harbor Perspectives in Biology, 7, a006080.

    Article  Google Scholar 

  6. Chang, H. Y., & Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiology and Molecular Biology Reviews, 64, 821–846.

    Article  CAS  Google Scholar 

  7. Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nature Reviews Cancer, 3, 46–54.

    Article  CAS  Google Scholar 

  8. Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 20, 175–193.

    Article  CAS  Google Scholar 

  9. Tewari, K., & Dhaneshwar, S. (2012). Inhibitors of apoptosis proteins (IAPs): clinical significance in cancer treatment research. J. Cancer Res. Updates, 1, 212–220.

    Google Scholar 

  10. Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: a target for anticancer therapy. International Journal of Molecular Sciences, 19, 448. https://doi.org/10.3390/ijms19020448

    Article  CAS  PubMed Central  Google Scholar 

  11. Altieri, D. C. (2003). Survivin and apoptosis control. Advances in Cancer Research, 88, 31–52.

    Article  CAS  Google Scholar 

  12. Altieri, D. C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 22, 8581–8589.

    Article  CAS  Google Scholar 

  13. Altieri, D. C. (2015). Survivin-the inconvenient IAP. Seminars in Cell & Developmental Biology, 39, 91–96.

    Article  CAS  Google Scholar 

  14. Johnson, M. E., & Howerth, E. W. (2004). Survivin: a bifunctional inhibitor of apoptosis protein. Veterinary Pathology, 41, 599–607.

    Article  CAS  Google Scholar 

  15. Tanaka, K., Iwamoto, S., Gon, G., Nohara, T., Iwamoto, M., & Tanigawa, N. (2000). Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clinical Cancer Research, 6, 127–134.

    CAS  PubMed  Google Scholar 

  16. Yamamoto, T., & Tanigawa, N. (2001). The role of survivin as a new target of diagnosis and treatment in human cancer. Medical Electron Microscopy, 34, 207–212.

    Article  CAS  Google Scholar 

  17. Dohi, T., Beltrami, E., Wall, N. R., Plescia, J., & Altieri, D. C. (2004). Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. The Journal of Clinical Investigation, 114, 1117–1127.

    Article  CAS  Google Scholar 

  18. Garg, H., Suri, P., Gupta, J. C., Talwar, G. P., & Dubey, S. (2016). Survivin: a unique target for tumor therapy. Cancer Cell International, 16, 49.

    Article  Google Scholar 

  19. Amroudie, M. N., & Ataei, F. (2019). Experimental and theoretical study of IBC domain from human IP3R2; molecular cloning, bacterial expression and protein purification. International Journal of Biological Macromolecules, 124, 1321–1327.

    Article  CAS  Google Scholar 

  20. Ataei, F., Torkzadeh-Mahani, M., & Hosseinkhani, S. (2013). A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay. Biosen. Bioelectron., 41, 642–648.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. El-Moatassim, C., Dornand, J., & Mani, J. C. (1992). Extracellular ATP and cell signalling. Biochimica et Biophysica Acta Molecular Cell Research, 1134, 31–45. https://doi.org/10.1016/0167-4889(92)90025-7

    Article  CAS  Google Scholar 

  23. Zamaraeva, M. V., Sabirov, R. Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S. V., & Okada, Y. (2005). Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death and Differentiation, 12, 1390–1397.

    Article  CAS  Google Scholar 

  24. Karimzadeh, S., Hosseinkhani, S., Fathi, A., Ataei, F., & Baharvand, H. (2018). Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis. European Journal of Cell Biology, 97, 126–135.

    Article  CAS  Google Scholar 

  25. Patel, R. Rinker, L. Peng, J. & Chilian, W.M. (2018) Reactive Oxygen Species: The Good and the Bad In: React. Oxyg. Species Living Cells. InTech. DOI: https://doi.org/10.5772/intechopen.71547.

  26. Bown, S. G. (1983). Phototherapy of tumors. World Journal of Surgery, 7, 700–709.

    Article  CAS  Google Scholar 

  27. Abazari, R., Mahjoub, A. R., Ataei, F., Morsali, A., Carpenter-Warren, C. L., Mehdizadeh, K., & Slawin, A. M. Z. (2018). Chitosan immobilization on Bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorganic Chemistry, 57, 13364–13379.

    Article  CAS  Google Scholar 

  28. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2, 329–333.

    Article  CAS  Google Scholar 

  29. Iwasa, T., Okamoto, I., Suzuki, M., Nakahara, T., Yamanaka, K., Hatashita, E., Yamada, Y., Fukuoka, M., Ono, K., & Nakagawa, K. (2008). Radiosensitizing effect of YM155, a novel small-molecule survivin suppressant, in non-small cell lung cancer cell lines. Clinical Cancer Research, 14, 6496–6504.

    Article  CAS  Google Scholar 

  30. Cheng, S. M., Chang, Y. C., Liu, C. Y., Lee, J. Y. C., Chan, H. H., Kuo, C. W., Lin, K. Y., Tsai, S. L., Chen, S. H., Li, C. F., Leung, E., Kanwar, J. R., Huang, C. C., Chang, J. Y., & Cheung, C. H. A. (2015). YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. British Journal of Pharmacology, 172, 214–234.

    Article  CAS  Google Scholar 

  31. Mali, S. (2013). Delivery systems for gene therapy. Indian J. Hum. Genet., 19, 3–8.

    Article  CAS  Google Scholar 

  32. Mehdizadeh, K., Ataei, F., & Hosseinkhani, S. (2020). Effects of doxorubicin and docetaxel on susceptibility to apoptosis in high expression level of survivin in HEK and HEK-S cell lines as in vitro models. Biochemical and Biophysical Research Communications, 532, 139–144.

    Article  CAS  Google Scholar 

  33. Peng, Q., Juzeniene, A., Chen, J., Svaasand, L. O., Warloe, T., Giercksky, K. E., & Moan, J. (2008). Lasers in medicine. Reports on Progress in Physics, 71(5), 056701.

    Article  Google Scholar 

  34. Singh, N., Krishnakumar, S., Kanwar, R. K., Cheung, C. H. A., & Kanwar, J. R. (2015). Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discovery Today, 20, 578–587.

    Article  CAS  Google Scholar 

  35. Rauch, A., Hennig, D., Schäfer, C., Wirth, M., Marx, C., Heinzel, T., Schneider, G., & Krämer, O. H. (2014). Survivin and YM155 How faithful is the liaison ? Biochimica et Biophysica Acta(BBA) Reviews on Cancer, 1845, 202–220. https://doi.org/10.1016/j.bbcan.2014.01.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research council of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farangis Ataei.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houshdarpour, R., Ataei, F. & Hosseinkhani, S. Efficient Stable Cell Line Generation of Survivin as an In Vitro Model for Specific Functional Analysis in Apoptosis and Drug Screening. Mol Biotechnol 63, 515–524 (2021). https://doi.org/10.1007/s12033-021-00313-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00313-y

Keywords

Navigation