Skip to main content

Advertisement

Log in

Biotechnology Towards Energy Crops

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society’s energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer, G., Prieler, S., van Velthuizen, H. T., Lensink, S. M., Londo, M., & de Wit, M. (2010). Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass and Bioenergy, 34, 159–172.

    Article  Google Scholar 

  2. Biomass Futures Website. http://www.biomassfutures.eu/. Accessed November 12, 2015.

  3. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  4. Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Science, 363, 557–572.

    Article  CAS  Google Scholar 

  5. George, E. F. (2008). Plant tissue culture procedure—Background. In E. F. George, M. A. Hall, & G.-J. De Klerk (Eds.), Plant propagation by tissue culture (pp. 1–29). Dordrecht: Springer.

    Google Scholar 

  6. McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83, 37–46.

    Article  CAS  Google Scholar 

  7. El Bassam, N. (1998). Energy plant species: Their use and impact on environment and development (p. 321). London: James & James.

    Google Scholar 

  8. Schubert, C. (2006). Can biofuels finally take centre stage. Nature Biotechnology, 24, 777–784.

    Article  CAS  Google Scholar 

  9. Graef, G., LaVallee, B. J., Tenopir, P., Tat, M., Schweiger, B., Kinney, A. J., et al. (2009). A high-oleic-acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnology Journal, 7, 411–421.

    Article  CAS  Google Scholar 

  10. Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., & Stewart, C. N, Jr. (2008). Plants to power: Bioenergy to fuel the future. Trends in Plant Science, 13, 421–429.

    Article  CAS  Google Scholar 

  11. Reijnders, L. (2010). Transport biofuel yields from food and lignocellulosic C4 crops. Biomass and Bioenergy, 34, 152–155.

    Article  CAS  Google Scholar 

  12. Karp, A., & Richter, G. M. (2011). Meeting the challenge of food and energy security. Journal of Experimental Botany, 62, 3263–3271.

    Article  CAS  Google Scholar 

  13. Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M., & Turkenburg, W. C. (2007). A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33, 56–106.

    Article  CAS  Google Scholar 

  14. Bevan, M. W., & Franssen, M. C. R. (2006). Investing in green and white biotech. Nature Biotechnology, 24, 765–767.

    Article  CAS  Google Scholar 

  15. Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: Genetic resources for bioenergy grasses. Trends in Plant Science, 3, 415–420.

    Article  Google Scholar 

  16. Somerville, C. (2007). Biofuels. Current Biology, 17, R115–R119.

    Article  CAS  Google Scholar 

  17. Simmons, B. A., Loque, D., & Blanch, H. W. (2008). Next-generation biomass feedstocks for biofuel production. Genome Biology, 9, 242.

    Article  Google Scholar 

  18. Jorgensen, U. (2011). Benefits versus risks of growing biofuel crops: The case of Miscanthus. Current Opinion in Environmental Sustainability, 3, 24–30.

    Article  Google Scholar 

  19. Gressel, J. (2008). Transgenics are imperative for biofuel crops. Plant Science, 174, 246–263.

    Article  CAS  Google Scholar 

  20. Michelin, M., Ruiz, H. A., Silva, D. P. D., Ruzene, D. S., Teixeira, J. A., & Polizeli, M. D. L. (2014). Cellulose from lignocellulosic waste. Polysaccharides: Bioactivity and biotechnology (pp. 1–33). Cham: Springer.

    Chapter  Google Scholar 

  21. Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresoure Technology, 101, 1570–1580.

    Article  CAS  Google Scholar 

  22. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J. & Erbach, D. C. (2005). Biomass as a feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. US Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN. (http://www.osti.gov/bridge).

  23. McLaren, J. S. (2005). Crop biotechnology provides an opportunity to develop a sustainable future. Trends in Biotechnology, 25, 339–342.

    Article  Google Scholar 

  24. Jansson, S., & Douglas, C. J. (2007). Populus: A model system system for plant biology. Annual Review of Plant Biology, 58, 435–458.

    Article  CAS  Google Scholar 

  25. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.

    Article  CAS  Google Scholar 

  26. Sjodin, A., Bylesjo, M., Skogstrom, O., Eriksson, D., Nilsson, P., Ryden, P., et al. (2006). UPSC-BASE–Populus transcriptomics online. Plant Journal, 48, 806–817.

    Article  Google Scholar 

  27. Hanley, S. J., Mallott, M. D., & Karp, A. (2006). Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genetics & Genomes, 3, 35–48.

    Article  Google Scholar 

  28. Berlin, S., Lagercrantz, U., von Arnold, S., Ost, T., & Rönnberg-Wästljung, A. C. (2010). High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus. BMC Genomics, 11, 129.

    Article  Google Scholar 

  29. Wu, R., Ma, C. X., Yang, M. C. K., Chang, M., Littell, R. C., Santra, U., et al. (2003). Quantitative trait loci for growth trajectories in Populus. Genetics Research, 81, 51–64.

    Article  CAS  Google Scholar 

  30. Street, N. R., Sjödin, A., Bylesjö, M., Gustafsson, P., Trygg, J., & Jansson, S. (2010). A cross-species transcriptomics approach to identify genes involved in leaf development. BMC Genomics, 11, 129.

    Article  Google Scholar 

  31. Tschaplinski, T. J., Tuskan, G. A., Sewell, M. M., Gebre, G. M., Todd, D. E., & Pendley, C. D. (2006). Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiology, 26, 595–604.

    Article  Google Scholar 

  32. Novaes, E., Osorio, L., Drost, D. R., Miles, B. L., Boaventura-Novaes, B. L., Benedict, C. R. D., et al. (2009). Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist, 182, 878–890.

    Article  CAS  Google Scholar 

  33. Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.

    Article  CAS  Google Scholar 

  34. El-Kassaby, Y. A., & Lstiburek, M. (2009). Breeding without breeding. Genetics Research, 91, 111–120.

    Article  Google Scholar 

  35. Coleman, H. D., Yan, J., & Mansfield, S. D. (2009). Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 106, 13118–13123.

    Article  CAS  Google Scholar 

  36. Lee, C., Teng, Q., Huang, W., Zhong, R., & Ye, Z. H. (2009). Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiology, 50, 1075–1089.

    Article  CAS  Google Scholar 

  37. Stewart, J. J., Akiyama, T., Chapple, C., Ralph, J., & Mansfield, S. D. (2009). The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiology, 150, 621–635.

    Article  CAS  Google Scholar 

  38. Bio Base Europe Website. www.bbeu.org/. Accessed August 2 2015.

  39. El-Khatib, R. T., Hamerlynck, E. P., Gallardo, F., & Kirby, E. G. (2004). Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiology, 24, 729–736.

    Article  CAS  Google Scholar 

  40. Hui-min, M., Boriel, R., El-Khatib, R., & Kirby, E. G. (2005). Characterization of transgenic poplar with ectopic expression of pine cyotsolic glutamine synthetase under conditions of varying nitrogen availability. New Phytologist, 167, 31–39.

    Article  Google Scholar 

  41. Chen, S., & Polle, A. (2010). Salinity tolerance of Populus. Plant Biology, 12, 317–333.

    Article  CAS  Google Scholar 

  42. Zhou, Z., Wang, M. J., Zhao, S. T., Hu, J. J., & Lu, M. Z. (2010). Changes in freezing tolerance in hybrid poplar caused by up- and down-regulation of PtFAD2 gene expression. Transgenic Research, 19, 647–654.

    Article  CAS  Google Scholar 

  43. Neale, D. B., & Kremer, A. (2011). Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12, 111–122.

    Article  CAS  Google Scholar 

  44. DEFRA Website. www.randd.defra.gov.uk/. Accessed June 29 2015.

  45. Labate, C. A., de Assis, T. F., Oda, S., de Mello, E. J., Mori, E. S., & de Morales, L. T. (2008). Eucalyptus. In C. Kole & T. C. Hall (Eds.), Compendium of transgenic crop plants: Transgenic forest tree species (pp. 35–108). Chichester: Wiley-Blackwell.

    Chapter  Google Scholar 

  46. Marcucci Poltri, S. N., Zelener, N., Rodriguez Traverso, J., Gelid, P., & Hopp, H. E. (2003). Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiology, 23, 625–632.

    Article  CAS  Google Scholar 

  47. Gaiotto, F. A., Bramucci, M., & Grattapaglia, D. (1997). Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theoretical and Applied Genetics, 95, 842–849.

    Article  CAS  Google Scholar 

  48. Eucawood Website. http://www.polebio.scsv.ups-tlse.fr/eucalyptus/eucawood/. Accessed May 5 2015.

  49. Rengel, D., San Clemente, H., Servant, F., Ladouce, N., Paux, E., & Wincker, P. (2009). A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biology, 9, 36.

    Article  Google Scholar 

  50. GENOLYPTUS Website. http://www.genolyptus.org.br/tikiindex.php?page=HomePageEn. Accessed May 10 2015.

  51. ArborGen Website. http://www.arborgen.us/. Accessed May 15 2015.

  52. García, J. R., Anderson, N., Le-Feuvre, R., Iturra, C., Elissetche, J., Chapple, C., & Valenzuela, S. (2014). Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalytus globulus. Plant Cell Reports, 33, 1263–1274.

    Article  Google Scholar 

  53. Sykes, R. W., Gjersing, E. L., Foutz, K., Rottmann, W. H., Kuhn, S. A., Foster, C. E., et al. (2015). Down-regulation of pcoumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. Grandis leads to improved sugar release. Biotechnology for Biofules, 8, 128.

    Article  Google Scholar 

  54. Ceres Website. www.ceres.net/. Accessed June 10 2015.

  55. Okada, M., Lanzatella, C., Saha, M. C., Bouton, J., Wu, R., & Tobias, C. M. (2010). Complete switchgrass genetic maps reveal sub genome collinearity, preferential pairing, and multilocus interactions. Genetics, 185, 745–760.

    Article  CAS  Google Scholar 

  56. Matts, J., Jagadeeswaran, G., Roe, B. A., & Sunkar, R. (2010). Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. Journal of Plant Physiology, 167, 896–904.

    Article  CAS  Google Scholar 

  57. Allgaier, M., Reddy, A., Park, J. I., Ivanova, N., D’haeseleer P, P., Lowry, S., et al. (2010). Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One, 5, e8812.

    Article  Google Scholar 

  58. Xie, H., King, A., Kilpelainen, I., Granstrom, M., & Argyropoulos, D. S. (2007). Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules, 8, 3740–3748.

    Article  CAS  Google Scholar 

  59. Noble Scientific Report 2005–2009. http://www.noble.org/News/ScientificReport/2009/2009ScientificReport.pdf.

  60. Mendel Website. http://www.mendelbio.com/index.php. Accessed April 3 2015.

  61. Atienza, G., Satovic, Z., Petersen, K., Dolstra, O., & Martín, A. (2002). Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theoretical and Applied Genetics, 105, 946–952.

    Article  CAS  Google Scholar 

  62. Armstead, I., Huang, L., Ravagnani, A., Robson, P., & Ougham, H. (2009). Bioinformatics in the orphan crops. Briefings in Bioinformatics, 10, 645–653.

    Article  CAS  Google Scholar 

  63. Sipos, B., Kreuger, E., Svensson, S. E., Reczey, K., Bjornsson, L., & Zacchi, G. (2010). Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass and Bioenergy, 34, 1721–1731.

    Article  CAS  Google Scholar 

  64. Mandolino, G., & Carboni, A. (2004). Potential of marker-assisted selection in hemp genetic improvement. Euphytica, 140, 107–120.

    Article  Google Scholar 

  65. Ebskamp, M. J. M. (2002). Engineering flax and hemp for an alternative to cotton. Trends in Biotechnology, 20, 229–230.

    Article  CAS  Google Scholar 

  66. Koltermann, A., Kettling, U., Kraus, M., Rarbach, R., Reisinger, C., Zavrel, M., & Söltl, Y. (2014). Cellulosic ethanol from agricultural residues—an advanced biofuel and biobased chemical platform. JSM Biotechnology & Biomedical Engineering, 2, 1024.

    Google Scholar 

  67. Sticklen, B. M. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews Genetics, 9, 433–443.

    Article  CAS  Google Scholar 

  68. Chen, L., Auh, C.-K., Dowling, P., Bell, J., Chen, F., Hopkins, A., et al. (2003). Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnology Journal, 1, 437–449.

    Article  CAS  Google Scholar 

  69. Ransom, C., Balan, V., Biswas, G., Dale, B., Crockett, E., & Sticklen, M. (2007). Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Applied Biochemistry and Biotechnology, 137–140, 207–219.

    Google Scholar 

  70. Hyunjong, B., Lee, B. S., & Hwang, I. (2006). Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increse protein in plant cells. Journal of Experimental Botany, 57, 161–169.

    Article  CAS  Google Scholar 

  71. Kricka, W., James, T. C., Fitzpatrick, J., & Bond, U. (2015). Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microbial Cell Factories, 14, 61.

    Article  Google Scholar 

  72. Cardone, M. (2003). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Agronomic evaluation, fuel production by transesterification. Biomass and Bioenergy, 25, 623–636.

    Article  CAS  Google Scholar 

  73. Dorado, M. P., Ballesteros, E., López, F. J., & Mittelbach, M. (2004). Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energy & Fuels, 18, 77–83.

    Article  CAS  Google Scholar 

  74. Taylor, D. C., Francis, T., Guo, Y., Brost, J. M., Katavic, V., Mietkiewska, E., et al. (2009). Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnology Journal, 7, 925–938.

    Article  CAS  Google Scholar 

  75. Sheikh, F. A., Najeeb, S., Rather, A. G., & Banga, S. (2010). Resynthesis of Ethiopian mustard (Brassica carinata L.) from related digenomic species: An unexplored possibility. Journal of Agricultural Biotechnology and Sustainable Development, 2, 030–034.

    Google Scholar 

  76. Barro, F., Escobar, J., De la Vega, M., & Martın, A. (2002). Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica, 129, 1–6.

    Article  Google Scholar 

  77. Alemayehu, N., & Becker, H. (2001). Variation and inheritance of erucic acid content in Brassica carinata germplasm collections from Ethiopia. Plant Breeding, 120, 331–335.

    Article  CAS  Google Scholar 

  78. Velasco, L., Nabloussi, A., De Haro, A., & Fernández-Martínez, J. M. (2004). Allelic variation in linolenic acid content of high erucic acid Ethiopian mustard and incorporation of the low linolenic acid trait into zero erucic acid germplasm. Plant Breed, 123, 137–140.

    Article  CAS  Google Scholar 

  79. Velasco, L., Fernández-Martínez, J. M., & De Haro, A. (2003). Inheritance of increased oleic acid concentration in high erucic acid Ethiopian mustard. Crop Science, 43, 106–109.

    Article  CAS  Google Scholar 

  80. FAIR-CT96-1946 Website. www.biomatnet.org/secure/Fair/F490.htm.

  81. Cloutier, S., Niu, Z., Datla, R., & Duguid, S. (2009). Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theoritical and Applied Genetics, 19, 53–63.

    Article  Google Scholar 

  82. Vromans, J. (2006). Molecular genetic studies in flax (Linum usitatissimum L.). PhD Thesis. Wageningen University, Wageningen, NL.

  83. Siemens, B. J., & Daun, J. K. (2005). Determination of the fatty acid composition of canola, flax, and Solin by near-infrared spectroscopy. Journal of the American Oil Chemists’ Society, 82, 153–157.

    Article  CAS  Google Scholar 

  84. Dong, J., & McHughen, A. (1993). An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Science, 88, 61–71.

    Article  CAS  Google Scholar 

  85. Weselake, R., Siloto, R., Liu, Q., & Laroche, A. (2010). Diacyglycerol acyltransferases from flax. US Patent Application 20100024078.

  86. Day, A., Ruel, K., Neutelings, G., Cronier, D., David, H., Hawkins, S., & Chabbert, B. (2005). Lignification in the flax stem: Evidence for an unusual lignin in bast fibers. Planta, 222, 234–245.

    Article  CAS  Google Scholar 

  87. Wrobel-Kwiatkowska, M., Starzycki, M., Zebrowski, J., Oszmianski, J., & Szopa, J. (2007). Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. Journal of Biotechnology, 128, 919–934.

    Article  CAS  Google Scholar 

  88. Roach, M. J., & Deyholos, M. K. (2007). Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Molecular Genetics and Genomics, 278, 149–165.

    Article  CAS  Google Scholar 

  89. Mace, E. S., Rami, J. F., Bouchet, S., Klein, P. E., Klein, R. R., & Kilian, A. (2009). A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biology, 9, 13.

    Article  Google Scholar 

  90. Evans, J., McCormick, R. F., Morishige, D., Olson, S. N., Weers, B., Hilley, J., et al. (2013). Extensive variation in the density and distribution of DNA polymorphism in Sorghum genomes. PLoS One, 8, e79192.

    Article  CAS  Google Scholar 

  91. Mace, E. S., Tai, S., Gilding, E. K., Li, Y., Prentis, P. J., Bian, L., et al. (2013). Whole–genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop Sorghum. Nature Communications, 4, 2320.

    Google Scholar 

  92. Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Upadhyaya, H. D., Riera-Lizarazu, O., et al. (2013). Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proceedings of the National Academy of Sciences of the United States of America, 110, 453–458.

    Article  CAS  Google Scholar 

  93. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009). The Sorghum bicolor genome and the diversification of the grasses. Nature, 457, 551–556.

    Article  CAS  Google Scholar 

  94. Casa, A. M., Pressoir, G., Brown, P. J., Mitchell, S. E., Rooney, W. L., Tuinstra, M. R., et al. (2008). Community resources and strategies for association mapping in Sorghum. Crop Science, 48, 30–40.

    Article  Google Scholar 

  95. Mace, E. S., & Jordan, D. R. (2011). Integrating Sorghum whole genome sequence information with a compendium of Sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theoretical and Applied Genetics, 123, 169–191.

    Article  CAS  Google Scholar 

  96. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.

    Article  CAS  Google Scholar 

  97. Morishige, D. T., Klein, P. E., Hilley, J. L., Sahraeian, S. M. E., Sharma, A., & Mullet, J. E. (2013). Digital genotyping of Sorghum—A diverse species with a repeat-rich genome. BMC Genomics, 14, 448.

    Article  CAS  Google Scholar 

  98. Zheng, L. Y., Guo, X. S., He, B., Sun, L. J., Peng, Y., Dong, S. S., et al. (2011). Genome-wide patterns of genetic variation in sweet and grain Sorghum (Sorghum bicolor). Genome Biology, 12, R114.

    Article  CAS  Google Scholar 

  99. Dugas, D. V., Monaco, M. K., Olsen, A., Klein, R. R., Kumari, S., Ware, D., & Klein, P. E. (2011). Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics, 12, 514.

    Article  CAS  Google Scholar 

  100. Liu, G., & Godwin, I. D. (2012). Highly efficient Sorghum transformation. Plant Cell Reports, 31, 999–1007.

    Article  Google Scholar 

  101. Sweetfuel Website. www.sweetfuel-project.eu. Accessed April 10 2015.

  102. Sarath, G., Mitchell, R. B., Sattler, S. E., Funnell, D., Pedersen, J. F., Graybosch, R. A., & Vogel, K. P. (2008). Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. Journal of Industrial Microbiology and Biotechnology, 35, 343–354.

    Article  CAS  Google Scholar 

  103. Basu, A., Maiti, M. K., Kar, S., Sen, S. K., & Pandey, B. (2010). Transgenic sweet sorghum with altered lignin composition and process of preparation thereof. United States Patent Application 20100058496.

  104. Mac Kormick, K., & Kautto, N. (2013). The bioeconomy in Europe: An overview. Sustainability, 5, 2589–2608.

    Article  Google Scholar 

  105. Scarlat, N., Dallemand, J. F., Monforti-Ferrario, F., & Nita, V. (2015). The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environmental Development, 15, 3–34.

    Article  Google Scholar 

Download references

Acknowledgments

This work was part of the 4FCrops project that was funded by the Seventh (7th) Research Framework Programme of the European Community. All the 4FCrops consortium members and the anonymous reviewers are acknowledged for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Milioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaritopoulou, T., Roka, L., Alexopoulou, E. et al. Biotechnology Towards Energy Crops. Mol Biotechnol 58, 149–158 (2016). https://doi.org/10.1007/s12033-016-9913-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9913-6

Keywords

Navigation