Skip to main content

Advertisement

Log in

Comparison of Caspase Genes for the Induction of Apoptosis Following Gene Delivery

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The polycation poly(ethylenimine) (PEI) was used to deliver the plasmids coding for various combinations of caspases to Cox-2 overexpressing cancer cell lines. It was found that the expression of the delivered genes, controlled by the Cox-2 promoter, correlated with the expression of the endogenous Cox-2 gene in each cell line in a relatively linear manner. Among the various caspase combination regimens, the combination of caspase 3 plus caspase 9 proved to be the most effective because of an apparent synergy between the two gene products, and produced phosphatidylserine flipping in addition to fragmentation of genomic DNA. Caspase 1 appeared to work independently of either caspases 3 or 9, as no synergistic effect was observed. Transfections with genes coding for granzyme B and caspase 8 yielded a lesser amount of cell death. The delivery of a combination of caspase genes could be readily moved to in vivo research of bladder and colon cancer treatments, and holds great applicability to a wide array of additional tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hernandez-Alcoceba, R., Sangro, B., & Prieto, J. (2006). Gene therapy of liver cancer. World Journal of Gastroenterology, 12, 6085–6097.

    CAS  Google Scholar 

  2. Vile, R. G., Russell, S. J., & Lemoine, N. R. (2000). Cancer gene therapy: Hard lessons and new courses. Gene Therapy, 7, 2–8. doi:10.1038/sj.gt.3301084.

    Article  CAS  Google Scholar 

  3. Kanduc, D., Mittelman, A., Serpico, R., et al. (2002). Cell death: Apoptosis versus necrosis. International Journal of Oncology, 21, 165–170. Review.

    CAS  Google Scholar 

  4. Steller, H. (1998). Artificial death switches: Induction of apoptosis by chemically induced caspase multimerization. Proceedings of the National Academy of Sciences of the United States of America, 95, 5421–5422. doi:10.1073/pnas.95.10.5421.

    Article  CAS  Google Scholar 

  5. Wang, J., Lu, X. X., Chen, D. Z., Li, S. F., & Zhang, L. S. (2004). Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World Journal of Gastroenterology, 10, 400–403.

    CAS  Google Scholar 

  6. Eastham, J. A., Chen, S. H., Sehgal, I., et al. (1996). Prostate cancer gene therapy: Herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Human Gene Therapy, 7, 515–523. doi:10.1089/hum.1996.7.4-515.

    Article  CAS  Google Scholar 

  7. Moriuchi, S., Oligino, T., Krisky, D., et al. (1998). Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Research, 58, 5731–5737.

    CAS  Google Scholar 

  8. Sato, T., Yamauchi, N., Sasaki, H., et al. (1998). An apoptosis-inducing gene therapy for pancreatic cancer with a combination of 55-kDa tumor necrosis factor (TNF) receptor gene transfection and mutein TNF administration. Cancer Research, 58, 1677–1683.

    CAS  Google Scholar 

  9. Katz, M. H., Spivack, D. E., Takimoto, S., et al. (2003). Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Annals of Surgical Oncology, 10, 762–772. doi:10.1245/ASO.2003.01.021.

    Article  Google Scholar 

  10. Lin, T., Gu, J., Zhang, L., et al. (2002). Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Research, 62, 3620–3625.

    CAS  Google Scholar 

  11. Kagawa, S., He, C., Gu, J., et al. (2001). Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Research, 61, 3330–3338.

    CAS  Google Scholar 

  12. Waxman, D. J., & Schwartz, P. S. (2003). Harnessing apoptosis for improved anticancer gene therapy. Cancer Research, 63, 8563–8572.

    CAS  Google Scholar 

  13. Fan, T. J., Han, L. H., Cong, R. S., & Liang, J. (2005). Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica, 37, 719–727. doi:10.1111/j.1745-7270.2005.00108.x.

    Article  CAS  Google Scholar 

  14. Xie, X., Zhao, X., Liu, Y., et al. (2001). Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Research, 61, 6795–6804.

    CAS  Google Scholar 

  15. Yamabe, K., Shimizu, S., Ito, T., et al. (1999). Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Therapy, 6, 1952–1959. doi:10.1038/sj.gt.3301041.

    Article  CAS  Google Scholar 

  16. Nishimura, S., Adachi, M., Ishida, T., et al. (2001). Adenovirus-mediated transfection of caspase-8 augments anoikis and inhibits peritoneal dissemination of human gastric carcinoma cells. Cancer Research, 61, 7009–7014.

    CAS  Google Scholar 

  17. Shinoura, N., Saito, K., Yoshida, Y., et al. (2000). Adenovirus-mediated transfer of bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Therapy, 7, 739–748. doi:10.1038/sj.cgt.7700158.

    Article  CAS  Google Scholar 

  18. Fu, Y. G., Qu, Y. J., Wu, K. C., Zhai, H. H., Liu, Z. G., & Fan, D. M. (2003). Apoptosis-inducing effect of recombinant caspase-3 expressed by constructed eucaryotic vector on gastric cell line SGC7901. World Journal of Gastroenterology, 9, 1935–1939.

    CAS  Google Scholar 

  19. Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56, 387–437. doi:10.1124/pr.56.3.3.

    Article  CAS  Google Scholar 

  20. Howe, L. R., Subbaramaiah, K., Brown, A. M., & Dannenberg, A. J. (2001). Cyclooxygenase-2: A target for the prevention and treatment of breast cancer. Endocrine-Related Cancer, 8, 97–114. doi:10.1677/erc.0.0080097.

    Article  CAS  Google Scholar 

  21. Trifan, O. C., & Hla, T. (2003). Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. Journal of Cellular and Molecular Medicine, 7, 207–222. doi:10.1111/j.1582-4934.2003.tb00222.x.

    Article  CAS  Google Scholar 

  22. Wilson, K. T., Fu, S., Ramanujam, K. S., & Meltzer, S. J. (1998). Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Research, 58, 2929–2934.

    CAS  Google Scholar 

  23. Shamma, A., Yamamoto, H., Doki, Y., et al. (2000). Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clinical Cancer Research, 6, 1229–1238.

    CAS  Google Scholar 

  24. Rajnakova, A., Moochhala, S., Goh, P. M., & Ngoi, S. (2001). Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric cancer. Cancer Letters, 172, 177–185. doi:10.1016/S0304-3835(01)00645-0.

    Article  CAS  Google Scholar 

  25. Ristimäki, A., Honkanen, N., Jänkälä, H., Sipponen, P., & Härkönen, M. (1997). Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Research, 57, 1276–1280.

    Google Scholar 

  26. Ferrández, A., Prescott, S., & Burt, R. W. (2003). COX-2 and colorectal cancer. Current Pharmaceutical Design, 9, 2229–2251. doi:10.2174/1381612033454036.

    Article  Google Scholar 

  27. Kutchera, W., Jones, D. A., Matsunami, N., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: Evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93, 4816–4820. doi:10.1073/pnas.93.10.4816.

    Article  CAS  Google Scholar 

  28. Kargman, S. L., O’Neill, G. P., Vickers, P. J., Evans, J. F., Mancini, J. A., & Jothy, S. (1995). Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Research, 55, 2556–2559.

    CAS  Google Scholar 

  29. Mohammed, S. I., Knapp, D. W., Bostwick, D. G., et al. (1999). Expression of cyclooxygenase-2 (COX-2) in human invasivetransitional cell carcinoma (TCC) of the urinary bladder. Cancer Research, 59, 5647–5650.

    CAS  Google Scholar 

  30. Boström, P. J., Aaltonen, V., Söderström, K. O., Uotila, P., & Laato, M. (2001). Expression of cyclooxygenase-1 and -2 in urinary bladder carcinomas in vivo and in vitro and prostaglandin E2 synthesis in cultured bladder cancer cells. Pathology, 33, 469–474. doi:10.1080/00313020120083188.

    Article  Google Scholar 

  31. Shirahama, T., & Sakakura, C. (2001). Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clinical Cancer Research, 7, 558–561.

    CAS  Google Scholar 

  32. Yoshimura, R., Sano, H., Mitsuhashi, M., Kohno, M., Chargui, J., & Wada, S. (2001). Expression of cyclooxygenase-2 in patients with bladder carcinoma. Journal of Urology, 165, 1468–1472. doi:10.1016/S0022-5347(05)66329-X.

    Article  CAS  Google Scholar 

  33. Godbey, W. T., & Atala, A. (2003). Directed Apoptosis in Cox-2-overexpressing cancer cells through expression-targeted gene delivery. Gene Therapy, 10, 1519–1527. doi:10.1038/sj.gt.3302012.

    Article  CAS  Google Scholar 

  34. Fletcher, B. S., Kujubu, D. A., Perrin, D. M., & Herschman, H. R. (1992). Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS10-encoded protein is a functional prostaglandin G/H synthase. The Journal of Biological Chemistry, 267, 4338–4344.

    CAS  Google Scholar 

  35. Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W., & Herschman, H. R. (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. The Journal of Biological Chemistry, 266, 12866–12872.

    CAS  Google Scholar 

  36. Strausberg, R. L., Feingold, E. A., & Grouse, L. H. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 99, 16899–16903. doi:10.1073/pnas.242603899.

    Article  Google Scholar 

  37. Fan, L., Freeman, K. W., Khan, T., Pham, E., & Spencer, D. M. (1999). Improved artificial death switches based on caspases and FADD. Human Gene Therapy, 10, 2273–2285. doi:10.1089/10430349950016924.

    Article  CAS  Google Scholar 

  38. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. doi:10.1093/nar/29.9.e45.

    Article  CAS  Google Scholar 

  39. Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 96, 5177–5181. doi:10.1073/pnas.96.9.5177.

    Article  CAS  Google Scholar 

  40. Jin, L., Zeng, H., Chien, S., et al. (2000). In vivo selection using a cell-growth switch. Nature Genetics, 26, 64–66. doi:10.1038/79194.

    Article  CAS  Google Scholar 

  41. Fischer, D., Li, Y., Ahlemeyer, B., Krieglatein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 24, 1121–1131. doi:10.1016/S0142-9612(02)00445-3.

    Article  CAS  Google Scholar 

  42. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., & van Oers, M. H. (1994). Annexin-V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 84, 1415–1420.

    CAS  Google Scholar 

  43. O’Brien, I. E., Reutelingsperger, C. P., & Holdaway, K. M. (1997). Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry, 29, 28–33. doi :10.1002/(SICI)1097-0320(19970901)29:1<28::AID-CYTO2>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  44. Zhang, G., Gurtu, V., Kain, S. R., & Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin-V. BioTechniques, 23, 525–531.

    CAS  Google Scholar 

  45. Nicholson, D. W., & Thornberry, N. A. (1997). Caspases: Killer proteases. Trends in Biochemical Sciences, 22, 299–306. doi:10.1016/S0968-0004(97)01085-2.

    Article  CAS  Google Scholar 

  46. Scaffidi, C., Fulda, S., Srinivasan, A., et al. (1998). Two CD95 (APO–1/Fas) signaling pathways. The EMBO Journal, 17, 1675–1687. doi:10.1093/emboj/17.6.1675.

    Article  CAS  Google Scholar 

  47. Mak, T. W., & Yeh, W. C. (2002). Signaling for survival and apoptosis in the immune system. Arthritis Research, 4(Suppl), S243–S252. doi:10.1186/ar569.

    Article  Google Scholar 

  48. Trapani, J. A. (2001). Granzymes: A family of lymphocyte granule serine proteases. Genome Biology, 2, 3014.1–3014.7. reviews.

    Article  Google Scholar 

  49. Hetts, S. W. (1998). To die or not to die: An overview of apoptosis and its role in disease. Journal of the American Medical Association, 279, 300–307. doi:10.1001/jama.279.4.300.

    Article  CAS  Google Scholar 

  50. Eissa, S., & Seada, L. S. (1998). Quantitation of bcl–2 protein in bladder cancer tissue by enzyme immunoassay: Comparison with Western blot and immunohistochemistry. Clinical Chemistry, 44, 1423–1429.

    CAS  Google Scholar 

  51. King, M. A., & Radicchi-Mastroianni, M. A. (2002). Effects of caspase inhibition on camptothecin-induced apoptosis of HL-60 cells. Cytometry, 49, 28–35. doi:10.1002/cyto.10141.

    Article  CAS  Google Scholar 

  52. Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., et al. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl–2 and Abl. The Journal of Experimental Medicine, 182, 1545–1556. doi:10.1084/jem.182.5.1545.

    Article  CAS  Google Scholar 

  53. Negron, J. F., & Lockshin, R. A. (2004). Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Developmental Dynamics, 231, 161–170. doi:10.1002/dvdy.20124.

    Article  CAS  Google Scholar 

  54. Fahrmeir, J., Gunther, M., Tietze, N., Wagner, E., & Ogris, M. (2007). Electrophoretic purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side effects in vivo. Journal of Controlled Release, 122, 236–245. doi:10.1016/j.jconrel.2007.05.013.

    Article  CAS  Google Scholar 

  55. Moffatt, S., Wiehle, S., & Cristiano, R. J. (2006). A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Therapy, 13, 1512–1523. doi:10.1038/sj.gt.3302773.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding for this research was provided by the Louisiana Board of Regents, LEQSF (2004-07)-RD-A-28 (WTG, XZ), and the Louis Stokes-Louisiana Alliance for Minority Participation (LS-LAMP), Tulane campus program (CT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W T Godbey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Turner, C. & Godbey, W.T. Comparison of Caspase Genes for the Induction of Apoptosis Following Gene Delivery. Mol Biotechnol 41, 236–246 (2009). https://doi.org/10.1007/s12033-008-9133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9133-9

Keywords

Navigation