Skip to main content
Log in

Post-translational Modifications of Recombinant Proteins: Significance for Biopharmaceuticals

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The production of recombinant therapeutic proteins is one of the fastest growing sectors of the pharmaceutical industry, particularly monoclonal antibodies and Fc-fusion proteins. Currently, mammalian cells are the dominant production system for these proteins because they can perform complex post-translational modifications that are often required for efficient secretion, drug efficacy, and stability. These protein modifications include misfolding and aggregation, oxidation of methionine, deamidation of asparagine and glutamine, variable glycosylation, and proteolysis. Such modifications not only pose challenges for accurate and consistent bioprocessing, but also may have consequences for the patient in that incorrect modifications and aggregation can lead to an immune response to the therapeutic protein. This mini-review describes examples analytical and preventative advances in the fields of protein oxidation, deamidation, misfolding and aggregation (glycosylation is covered in other articles in this issue). The feasibility of partially replacing traditional analytical methods such as peptide mapping with high-throughput screens and their use in clone and media selection are evaluated. This review also discusses how further technical advances could improve the manufacturability, potency, and safety of biotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roach, P., & Woodworth, J. R. (2002). Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clinical Pharmacokinetics, 41, 1043–1057.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes, L. M., & Dickson, A. J. (2006). Mammalian cell factories for efficient and stable protein expression. Current Opinion in Biotechnology, 17, 381–386.

    Article  PubMed  CAS  Google Scholar 

  3. Schroder, M. K. C., & Friedl P. (1999). Quantitative analysis of transcription and translation in gene amplified Chinese hamster ovary cells on the basis of a kinetic model. Cytotechnology, 29, 93–102.

    Article  CAS  Google Scholar 

  4. Schroder, M., & Kaufman, R. J. (2005). The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–789.

    Article  PubMed  Google Scholar 

  5. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., & Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2, 326–332.

    Article  PubMed  CAS  Google Scholar 

  6. Molinari, M., & Helenius, A. (2000). Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science, 288, 331–333.

    Article  PubMed  CAS  Google Scholar 

  7. Schroder, M., Schafer, R., & Friedl, P. (2002). Induction of protein aggregation in an early secretory compartment by elevation of expression level. Biotechnology and Bioengineering, 78, 131–140.

    Article  PubMed  CAS  Google Scholar 

  8. Cromwell, M. E., Hilario, E., & Jacobson, F. (2006). Protein aggregation and bioprocessing. AAPS Journal, 8, E572–579.

    Article  PubMed  CAS  Google Scholar 

  9. Chaderjian, W. B., Chin, E. T., Harris, R. J., & Etcheverry, T. M. (2005). Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnology Progress, 21, 550–553.

    Article  PubMed  CAS  Google Scholar 

  10. Chakravarthi, S., Jessop, C. E., & Bulleid, N. J. (2006). The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Report, 7, 271–275.

    Article  CAS  Google Scholar 

  11. Lin, J. J., Meyer, J. D., Carpenter, J. F., & Manning, M. C. (2000). Stability of human serum albumin during bioprocessing: Denaturation and aggregation during processing of albumin paste. Pharmaceutical Research, 17, 391–396.

    Article  PubMed  CAS  Google Scholar 

  12. Cleland, J. L., Lam, X., Kendrick, B., Yang, J., Yang, T. H., Overcashier, D., Brooks, D., Hsu, C., & Carpenter, J. F. (2001). A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. Journal of Pharmaceutical Sciences, 90, 310–321.

    Article  PubMed  CAS  Google Scholar 

  13. Tsumoto, K., Ejima, D., Kita, Y., & Arakawa, T. (2005). Review: Why is arginine effective in suppressing aggregation? Protein and Peptide Letters, 12, 613–619.

    Article  PubMed  CAS  Google Scholar 

  14. Hermeling, S., Crommelin, D. J., Schellekens, H., & Jiskoot, W. (2004). Structure-immunogenicity relationships of therapeutic proteins. Pharmaceutical Research, 21, 897–903.

    Article  PubMed  CAS  Google Scholar 

  15. Purohit, V. S., Middaugh, C. R., & Balasubramanian, S. V. (2006). Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. Journal of Pharmaceutical Sciences, 95, 358–371.

    Article  PubMed  CAS  Google Scholar 

  16. Ryff, J. C. (1997). Clinical investigation of the immunogenicity of interferon-alpha 2a. Journal of Interferon and Cytokine Research, 17(Suppl 1), S29–S33.

    PubMed  CAS  Google Scholar 

  17. Kleizen, B., & Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 16, 343–349.

    Article  PubMed  CAS  Google Scholar 

  18. Dorner, A. J., Wasley, L. C., & Kaufman, R. J. (1992). Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO Journal, 11, 1563–1571.

    PubMed  CAS  Google Scholar 

  19. Butz, J., Niebauer, R. T., & Robinson, A. S. (2003). Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. Biotechnology and Bioengineering, 84, 292–304.

    Article  PubMed  CAS  Google Scholar 

  20. Damasceno, L., Anderson, K. A., Ritter, G., Cregg, J. M., Old., L. J., & Batt, C. A. (2006). Co-overexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Applied Microbiology and Biotechnology, 56, 157–164.

    Google Scholar 

  21. Chakravarthi, S., & Bulleid, N. J. (2004). Glutathione is required to regulate the formation of native disulfide bonds within proteins entering the secretory pathway. Journal of Biological Chemistry, 279, 39872–39879.

    Article  PubMed  CAS  Google Scholar 

  22. Wlaschin, K. F., Nissom, P. M., Gatti Mde, L., Ong, P. F., Arleen, S., Tan, K. S., Rink, A., Cham, B., Wong, K., Yap, M., et al. (2005). EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 592–606.

    Article  PubMed  CAS  Google Scholar 

  23. Soenderkaer, S., Carpenter, J. F., van de Weert, M., Hansen, L. L., Flink, J., & Frokjaer, S. (2004). Effects of sucrose on rFVIIa aggregation and methionine oxidation. European Journal of Pharmaceutical Sciences, 21, 597–606.

    Article  PubMed  CAS  Google Scholar 

  24. Taggart, C., Cervantes-Laurean, D., Kim, G., McElvaney, N. G., Wehr, N., Moss, J., & Levine, R. L. (2000). Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. Journal of Biological Chemistry, 275, 27258–27265.

    PubMed  CAS  Google Scholar 

  25. Chelius, D., Rehder, D. S., & Bondarenko, P. V. (2005). Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Analytical Chemistry, 77, 6004–6011.

    Article  PubMed  CAS  Google Scholar 

  26. Harris, R. J., Kabakoff, B., Macchi, F. D., Shen, F. J., Kwong, M., Andya, J. D., Shire, S. J., Bjork, N., Totpal, K., & Chen, A. B. (2001). Identification of multiple sources of charge heterogeneity in a recombinant antibody. Journal of Chromatography B: Biomedical Science Applications, 752, 233–245.

    Article  CAS  Google Scholar 

  27. Hsu, Y. R., Chang, W. C., Mendiaz, E. A., Hara, S., Chow, D. T., Mann, M. B., Langley, K. E., & Lu, H. S. (1998). Selective deamidation of recombinant human stem cell factor during in vitro aging: Isolation and characterization of the aspartyl and isoaspartyl homodimers and heterodimers. Biochemistry, 37, 2251–2262.

    Article  PubMed  CAS  Google Scholar 

  28. Pekar, A., & Sukumar, M. (2007). Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: Practical considerations that affect precision and accuracy. Analytical Biochemistry, 367, 225–237.

    Article  PubMed  CAS  Google Scholar 

  29. Ye, H. (2006). Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography-multiangle laser light scattering. Analytical Biochemistry, 356, 76–85.

    Article  PubMed  CAS  Google Scholar 

  30. Krol, M., Roterman, I., Piekarska, B., Konieczny, L., Rybarska, J., Stopa, B., Spolnik, P., & Szneler, E. (2005). An approach to understand the complexation of supramolecular dye Congo red with immunoglobulin L chain lambda. Biopolymers, 77, 155–162.

    Article  PubMed  CAS  Google Scholar 

  31. Lindgren, M., Sorgjerd, K., & Hammarstrom, P. (2005). Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophysical Journal, 88, 4200–4212.

    Article  PubMed  CAS  Google Scholar 

  32. Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S. A., Krishna, V., Grover, R. K., Roy, R., & Singh, S. (2005). Mechanism of thioflavin T binding to amyloid fibrils. Journal of Structural Biology, 151, 229–238.

    Article  PubMed  CAS  Google Scholar 

  33. Lin, H. J., Lin, C. H., Tseng, H. C., & Chen, Y. H. (2006). Detecting disulfide crosslinks of high-molecular weight complexes in mouse SVS proteins by diagonal electrophoresis. Analytical Biochemistry, 352, 296–298.

    Article  PubMed  CAS  Google Scholar 

  34. Houde, D., Kauppinen, P., Mhatre, R., & Lyubarskaya, Y. (2006). Determination of protein oxidation by mass spectrometry and method transfer to quality control. Journal of Chromatography A, 1123, 189–198.

    Article  PubMed  CAS  Google Scholar 

  35. Chumsae, C., Gaza-Bulseco, G., Sun, J., & Liu, H. (2006). Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 850, 285–294.

    Google Scholar 

  36. Lam, X. M., Yang, J. Y., & Cleland, J. L. (1997). Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. Journal of Pharmaceutical Sciences, 86, 1250–1255.

    Article  PubMed  CAS  Google Scholar 

  37. Schellekens, H., & Ryff, J. C. (2002). ‘Biogenerics’: The off-patent biotech products. Trends in Pharmacological Sciences, 23, 119–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Martin Clynes and other members of the National Institute for Cellular Biotechnology (NICB), Dublin City University for the use of their laboratory facilities. The financial support of the Irish Industrial Development Agency (IDA, Ireland) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, N., Murphy, L. & Tyther, R. Post-translational Modifications of Recombinant Proteins: Significance for Biopharmaceuticals. Mol Biotechnol 39, 113–118 (2008). https://doi.org/10.1007/s12033-008-9049-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9049-4

Keywords

Navigation