Skip to main content

Advertisement

Log in

Combined Genome-Wide CSF Aβ-42’s Associations and Simple Network Properties Highlight New Risk Factors for Alzheimer’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The abnormal deposition of amyloid-β protein in the brain plays an important role in Alzheimer’s disease (AD), being considered a potential clinical biomarker. To investigate genetic associations with amyloid-β we used biomarker data and genome-wide variants from individuals with AD and mild cognitive impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We used a standard linear model and retested the associations with a mixed linear model to correct the residual sample structure. Both methods’ results showed two identical significant SNPs associated with the A β-42 levels in CSF (rs2075650 at intron region TOMM40 with p-value ≥ 1 × 10–16 and rs439401 in the intergenic region of LOC100129500 and APOC1 with p-value ≥ 1 × 10-9) and highlighted APOC1 and TOMM40, which are well-known genes previously associated with AD. Extending our analysis, we considered possible candidate genes mapped to SNPs with p-value ≥ 1 × 10-6 to explore gene-set enrichment e gene-gene network analysis, which reveals genes related to synaptic transmission, transmission of nerve impulses, cell-cell signaling and neurological processes. These genes require fine mapping and replication studies to allow more detailed understanding of how they may contribute to the genetic architecture of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alzheimer’s Association (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245. doi:10.1016/j.jalz.2013.02.003, ISSN 1552–5260

    Article  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39(suppl 1):D685–D690

  • Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41.D1: D816–D823223

  • Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apoliprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • García-Ayllón MS, Campanari ML, Montenegro MF et al (2014) Presenilin-1 influences processing of the acetylcholinesterase membrane anchor PRiMA. Neurobiol Aging 35:1526–1536

    Article  PubMed  Google Scholar 

  • Graff-Radford NR, Crook JE, Lucas J (2007) Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 64:354–362

    Article  PubMed  Google Scholar 

  • Han MR, Schellenberg G, Wang LS, Alzheimer’s Disease Neuroimaging Initiative (2010) Genome-wide association reveals genetic effects on human Abeta42 and tau protein levels in cerebrospinal fluids: a case control study. BMC Neurol 10:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  PubMed Central  Google Scholar 

  • Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Humphries AD, Streimann IC, Stojanovski D et al (2005) Dissection of the mitochondrial import and assembly pathway for human TOM40. J Biol Chem 280:11535–11543

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging–Alzheimer’s Association guidelines on neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ki CS, Na DL, Kim DK, Kim HJ, Kim JW (2002) Genetic association of an apolipoprotein C-I (APOC1) gene polymorphism with late-onset Alzheimer's disease. Neurosci Lett 319:75–78.

  • Kim S, Swaminathan S, Shen L et al (2011) Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology 76:69–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koyama A, Okereke OI, Yang T, Blacker D, Selkoe DJ, Grodstein F (2012) Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch Neurol 69:824–831

    Article  PubMed Central  PubMed  Google Scholar 

  • Maruszak A, Pepłońska B, Safranow K, Chodakowska-Żebrowska M, Barcikowska M, Zekanowski C (2012) TOMM40 rs10524523 polymorphism’s role in late-onset Alzheimer’s disease and in longevity. J Alzheimers Dis 28:309–322

    CAS  PubMed  Google Scholar 

  • Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26(22):2927–2928

  • Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI) Clinical characterization. Neurology 74: 201–209.

  • Potkin SG, Guffanti G, Lakatos A et al (2009) Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS One 4, e6501

    Article  PubMed Central  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg PB, Lyketsos C (2008) Mild cognitive impairment: searching for the prodrome ofAlzheimer’s disease. World Psychiatry 7:72–78

    Article  PubMed Central  PubMed  Google Scholar 

  • Roses AD, Lutz MW, Amrine-Madsen H et al (2010) A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 10:375–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito R, Smoot ME, Ono K et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarawneh R, Holtzman DM (2010) Biomarkers in translational research of Alzheimer’s disease. Neuropharmacology 59:310–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Vandeerstichele H, Korecka M et al (2010) Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement 6:230–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhao F, Lv ZP et al. (2014) Association between APOC1 polymorphism and Alzheimer's disease: a case-control study and meta-analysis. PLoSOne. 9(1):e87017

Download references

Acknowledgments

Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: Abbott; the Alzheimer’s Association; the Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences, Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec, Inc.; Bristol-Myers Squibb Co.; Eisai, Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Co.; F. Hoffmann-La Roche, Ltd., and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO, Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development, LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corp.; Pfizer, Inc.; Servier; Synarc, Inc.; Takeda Pharmaceutical Co. The Canadian Institutes of Health Research is providing funds to support the ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514.

This study received financial support from the following academic bureaus and Brazilian funding agencies: Centro de Informática-CIN, LIKA-JIKA, UFPE, FACEPE and CNPq.

IG Costa acknowledges fundings received from Interdisciplinary Center for Clinical Research (IZKF) Medical Faculty RWTH Aachen.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. R. M. Oliveira.

Ethics declarations

Conflict of interest

There is no conflict of interest in this study.

Additional information

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to its design and implementation and/or provided data but did not participate in the analysis or writing of this report. A complete listing of the ADNI investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

M. B. R. Souza and G. S. Araújo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, M.B.R., Araújo, G.S., Costa, I.G. et al. Combined Genome-Wide CSF Aβ-42’s Associations and Simple Network Properties Highlight New Risk Factors for Alzheimer’s Disease. J Mol Neurosci 58, 120–128 (2016). https://doi.org/10.1007/s12031-015-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0667-6

Keywords

Navigation