Skip to main content
Log in

Quantitative EEG Correlates of Low Cerebral Perfusion in Severe Stroke

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Continuous EEG provides the unique possibility to monitor neuronal function non-invasively. In our pilot study, we evaluated EEG spectral power during spontaneous drops in cerebral perfusion pressure (CPP) in deeply sedated and mechanically ventilated patients with severe stroke. We aimed to identify parameters that may be used for continuous monitoring even in patients with a burst-suppression baseline EEG pattern.

Methods

Twenty ventilated and sedated patients with severe hemorrhagic or ischemic stroke underwent continuous EEG monitoring with synchronous CPP recording.

Results

EEG monitoring duration was 83.9 hours on average per patient. Spectral power of EEG during drops of CPP was compared with epochs during normal CPP under the same levels of sedation. We found a significant decrease in faster EEG activity (3.5–20.7 Hz) during phases of low CPP (unaffected hemisphere P < 0.01, affected hemisphere P < 0.01, both P < 0.01).

Conclusion

Despite considerable changes in baseline activity due to deep sedation and severe brain injury, we found evidence for disturbed neuronal function during drops in CPP. Thus, continuous EEG monitoring may add clinically relevant information on neuronal function in the setting of multimodality brain monitoring. Further studies are needed to implement real-time data analysis in the ICU setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Claassen J, Mayer SA. Continuous electroencephalographic monitoring in neurocritical care. Curr Neurol Neurosci Rep. 2002;2:534–40. doi:10.1007/s11910-002-0042-1.

    Article  PubMed  Google Scholar 

  2. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6. doi:10.1097/01.CCM.0000295667.66853.BC.

    Article  PubMed  Google Scholar 

  3. Vespa PM, O’Phelan K, Shah M, Mirabelli J, Starkman S, Kidwell C, et al. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    PubMed  CAS  Google Scholar 

  4. Claassen J, Hirsch LJ, Frontera JA, Fernandez A, Schmidt M, Kapinos G, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12. doi:10.1385/NCC:4:2:103.

    Article  PubMed  Google Scholar 

  5. Theilen HJ, Ragaller M, Tscho U, May SA, Schackert G, Albrecht MD. Electroencephalogram silence ratio for early outcome prognosis in severe head trauma. Crit Care Med. 2000;28:3522–9. doi:10.1097/00003246-200010000-00029.

    Article  PubMed  CAS  Google Scholar 

  6. Van Putten MJ, Tavy DL. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke. 2004;35:2489–92. doi:10.1161/01.STR.0000144649.49861.1d.

    Article  PubMed  Google Scholar 

  7. Thomsen CE, Prior PF. Quantitative EEG in assessment of anaesthetic depth: comparative study of methodology. Br J Anaesth. 1996;77:172–8.

    PubMed  CAS  Google Scholar 

  8. Labar DR, Fisch BJ, Pedley TA, Fink ME, Solomon RA. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991;78:325–32. doi:10.1016/0013-4694(91)90094-K.

    Article  PubMed  CAS  Google Scholar 

  9. Claassen J, Hirsch LJ, Kreiter KT, Du EY, Connolly ES, Emerson RG, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710. doi:10.1016/j.clinph.2004.06.017.

    Article  PubMed  Google Scholar 

  10. Vespa PM, Nuwer MR, Juhasz C, Alexander M, Nenov V, Martin N, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15. doi:10.1016/S0013-4694(97)00071-0.

    Article  PubMed  CAS  Google Scholar 

  11. Blume WT. Drug effects on EEG. J Clin Neurophysiol. 2006;23:306–11. doi:10.1097/01.wnp.0000229137.94384.fa.

    Article  PubMed  Google Scholar 

  12. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.

    PubMed  CAS  Google Scholar 

  13. Scherg M, Ille N, Bornfleth H, Berg P. Advanced tools for digital EEG review: virtual source montages, whole-head mapping, correlation, and phase analysis. J Clin Neurophysiol. 2002;19:91–112. doi:10.1097/00004691-200203000-00001.

    Article  PubMed  Google Scholar 

  14. Blair RC, Karniski W. An alternative method for significance testing of waveform difference potentials. Psychophysiology. 1993;30:518–24. doi:10.1111/j.1469-8986.1993.tb02075.x.

    Article  PubMed  CAS  Google Scholar 

  15. Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116:e391–413. doi:10.1161/CIRCULATIONAHA.107.183689.

    Article  PubMed  Google Scholar 

  16. Steiner T, Kaste M, Forsting M, Mendelow D, Kwiecinski H, Szikora I, et al. Recommendations for the management of intracranial haemorrhage––part I: spontaneous intracerebral haemorrhage. The European Stroke Initiative Writing Committee and the Writing Committee for the EUSI Executive Committee. Cerebrovasc Dis. 2006;22:294–316. doi:10.1159/000094831.

    Article  PubMed  Google Scholar 

  17. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, et al. Guidelines for the early management of adults with ischemic stroke. Circulation. 2007;115:e478–534. doi:10.1161/CIRCULATIONAHA.107.181486.

    Article  PubMed  Google Scholar 

  18. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8. doi:10.1097/00003246-200204000-00002.

    Article  PubMed  Google Scholar 

  19. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury––IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24:S59–64.

    PubMed  Google Scholar 

  20. Stejskal L, Kramar F, Ostry S, Benes V, Mohapl M, Limberk B. Experience of 500 cases of neurophysiological monitoring in carotid endarterectomy. Acta Neurochir (Wien). 2007;149:681–8. doi:10.1007/s00701-007-1228-8. discussion 689.

    Article  CAS  Google Scholar 

  21. Sharbrough FW, Messick JM Jr, Sundt TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4:674–83.

    PubMed  CAS  Google Scholar 

  22. Blume WT, Ferguson GG, McNeill DK. Significance of EEG changes at carotid endarterectomy. Stroke. 1986;17:891–7.

    PubMed  CAS  Google Scholar 

  23. Chiappa KH, Burke SR, Young RR. Results of electroencephalographic monitoring during 367 carotid endarterectomies. Use of a dedicated minicomputer. Stroke. 1979;10:381–8.

    PubMed  CAS  Google Scholar 

  24. Trojaborg W, Boysen G. Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol. 1973;34:61–9. doi:10.1016/0013-4694(73)90151-X.

    Article  PubMed  CAS  Google Scholar 

  25. Sundt TM Jr, Sharbrough FW, Anderson RE, Michenfelder JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy 1974. J Neurosurg. 2007;107:887–97. doi:10.3171/JNS-07/10/0887.

    Article  PubMed  Google Scholar 

  26. Hans SS, Jareunpoon O. Prospective evaluation of electroencephalography, carotid artery stump pressure, and neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients. J Vasc Surg. 2007;45:511–5. doi:10.1016/j.jvs.2006.11.035.

    Article  PubMed  Google Scholar 

  27. Whittemore AD, Kauffman JL, Kohler TR, Mannick JA. Routine electroencephalographic (EEG) monitoring during carotid endarterectomy. Ann Surg. 1983;197:707–13. doi:10.1097/00000658-198306000-00009.

    Article  PubMed  CAS  Google Scholar 

  28. Rampil IJ, Correll JW, Rosenbaum SH, Quest DO, Holzer JA. Computerized electroencephalogram monitoring and carotid artery shunting. Neurosurgery. 1983;13:276–9. doi:10.1097/00006123-198309000-00011.

    Article  PubMed  CAS  Google Scholar 

  29. Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K. Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr Clin Neurophysiol. 1989;72:16–30. doi:10.1016/0013-4694(89)90027-8.

    Article  PubMed  CAS  Google Scholar 

  30. Jordan GJ. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21:341–52.

    PubMed  Google Scholar 

  31. Adams DC, Heyer EJ, Emerson RG, Moeller JR, Spotnitz HM, Smith DH, et al. The reliability of quantitative electroencephalography as an indicator of cerebral ischemia. Anesth Analg. 1995;81:80–3. doi:10.1097/00000539-199507000-00016.

    Article  PubMed  CAS  Google Scholar 

  32. Merat S, Levecque JP, Le Gulluche Y, Diraison Y, Brinquin L, Hoffmann JJ. BIS monitoring may allow the detection of severe cerebral ischemia. Can J Anaesth. 2001;48:1066–9. doi:10.1007/BF03020370.

    Article  PubMed  CAS  Google Scholar 

  33. Morimoto Y, Monden Y, Ohtake K, Sakabe T, Hagihira S. The detection of cerebral hypoperfusion with bispectral index monitoring during general anesthesia. Anesth Analg. 2005;100:158–61. doi:10.1213/01.ANE.0000139347.64944.95.

    Article  PubMed  Google Scholar 

  34. el-Dawlatly AA. EEG bispectral index during carotid endarterectomy. Middle East J Anaesthesiol. 2003;17:287–93.

    Google Scholar 

  35. Umegaki N, Hirota K, Kitayama M, Yatsu Y, Ishihara H, Mtasuki A. A marked decrease in bispectral index with elevation of suppression ratio by cervical haematoma reducing cerebral perfusion pressure. J Clin Neurosci. 2003;10:694–6. doi:10.1016/j.jocn.2002.11.001.

    Article  PubMed  CAS  Google Scholar 

  36. Finnigan SP, Rose SE, Walsh M, Griffin M, Janke AL, McMahon KL, et al. Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke. 2004;35:899–903. doi:10.1161/01.STR.0000122622.73916.d2.

    Article  PubMed  Google Scholar 

  37. Finnigan SP, Walsh M, Rose SE, Chalk JB. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol. 2007;118:2525–32. doi:10.1016/j.clinph.2007.07.021.

    Article  PubMed  Google Scholar 

  38. Burghaus L, Hilker R, Dohmen C, Bosche B, Winhuisen L, Galldiks N, et al. Early electroencephalography in acute ischemic stroke: prediction of a malignant course? Clin Neurol Neurosurg. 2007;109:45–9. doi:10.1016/j.clineuro.2006.06.003.

    Article  PubMed  Google Scholar 

  39. de Vos CC, van Maarseveen SM, Brouwers PJ, van Putten MJ. Continuous EEG monitoring during thrombolysis in acute hemispheric stroke patients using the brain symmetry index. J Clin Neurophysiol. 2008;25:77–82. doi:10.1097/WNP.0b013e31816ef725.

    Article  PubMed  Google Scholar 

  40. Finnigan SP, Rose SE, Chalk JB. Rapid EEG changes indicate reperfusion after tissue plasminogen activator injection in acute ischaemic stroke. Clin Neurophysiol. 2006;117:2338–9. doi:10.1016/j.clinph.2006.06.718.

    Article  PubMed  Google Scholar 

  41. Berger C, Kiening K, Schwab S. Neurochemical monitoring of therapeutic effects in large human MCA infarction. Neurocrit Care. 2008.

  42. Berger C, Sakowitz OW, Kiening KL, Schwab S. Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke. 2005;36:e4–6. doi:10.1161/01.STR.0000151328.70519.e9.

    Article  PubMed  CAS  Google Scholar 

  43. Steiner T, Meisel F, Hacke W. Nervenarzt. Continuous monitoring of patients with extensive strokes. Importance of monitoring on the neurological intensive care unit. 2002;73:501–7. doi:10.1007/s00115-002-1280-9.

  44. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, et al. Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke. 2003;34:2152–8. doi:10.1161/01.STR.0000083624.74929.32.

    Article  PubMed  Google Scholar 

  45. Wartenberg KE, Mayer SA. Multimodal brain monitoring in the neurological intensive care unit: where does continuous EEG fit in? J Clin Neurophysiol. 2005;22:124–7. doi:10.1097/01.WNP.0000154918.51389.B6.

    Article  PubMed  Google Scholar 

  46. Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med. 2001;29:635–40. doi:10.1097/00003246-200103000-00031.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Diedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diedler, J., Sykora, M., Bast, T. et al. Quantitative EEG Correlates of Low Cerebral Perfusion in Severe Stroke. Neurocrit Care 11, 210–216 (2009). https://doi.org/10.1007/s12028-009-9236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-009-9236-6

Keywords

Navigation