Skip to main content

Advertisement

Log in

Overview of the 2017 WHO Classification of Pituitary Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

This review focuses on discussing the main changes on the upcoming fourth edition of the WHO Classification of Tumors of the Pituitary Gland emphasizing histopathological and molecular genetics aspects of pituitary neuroendocrine (i.e., pituitary adenomas) and some of the non-neuroendocrine tumors involving the pituitary gland. Instead of a formal review, we introduced the highlights of the new WHO classification by answering select questions relevant to practising pathologists. The revised classification of pituitary adenomas, in addition to hormone immunohistochemistry, recognizes the role of other immunohistochemical markers including but not limited to pituitary transcription factors. Recognizing this novel approach, the fourth edition of the WHO classification has abandoned the concept of “a hormone-producing pituitary adenoma” and adopted a pituitary adenohypophyseal cell lineage designation of the adenomas with subsequent categorization of histological variants according to hormone content and specific histological and immunohistochemical features. This new classification does not require a routine ultrastructural examination of these tumors. The new definition of the Null cell adenoma requires the demonstration of immunonegativity for pituitary transcription factors and adenohypophyseal hormones Moreover, the term of atypical pituitary adenoma is no longer recommended. In addition to the accurate tumor subtyping, assessment of the tumor proliferative potential by mitotic count and Ki-67 index, and other clinical parameters such as tumor invasion, is strongly recommended in individual cases for consideration of clinically aggressive adenomas. This classification also recognizes some subtypes of pituitary neuroendocrine tumors as “high-risk pituitary adenomas” due to the clinical aggressive behavior; these include the sparsely granulated somatotroph adenoma, the lactotroph adenoma in men, the Crooke’s cell adenoma, the silent corticotroph adenoma, and the newly introduced plurihormonal Pit-1-positive adenoma (previously known as silent subtype III pituitary adenoma). An additional novel aspect of the new WHO classification was also the definition of the spectrum of thyroid transcription factor-1 expressing pituitary tumors of the posterior lobe as representing a morphological spectrum of a single nosological entity. These tumors include the pituicytoma, the spindle cell oncocytoma, the granular cell tumor of the neurohypophysis, and the sellar ependymoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenne C (Eds). WHO Classification of Tumours of the Central Nervous System. Revised 4th Edition. IARC: Lyon, 2016.

    Google Scholar 

  2. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 77(5):1275–1280, 1993.

    CAS  PubMed  Google Scholar 

  3. Friend KE, Chiou YK, Laws ER Jr, Lopes MB, Shupnik MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab 77(5):1281–1286, 1993.

    CAS  PubMed  Google Scholar 

  4. Lloyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech 39(2):168–181, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Tani Y, Sugiyama T, Izumiyama H, Yoshimoto T, Yamada S, Hirata Y. Differential gene expression profiles of POMC-related enzymes, transcription factors and receptors between non-pituitary and pituitary ACTH-secreting tumors. Endocr J 58(4):297–303, 2011.

    Article  CAS  PubMed  Google Scholar 

  6. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81(6):2165–2170, 1996.

    CAS  PubMed  Google Scholar 

  7. Nishioka H, Inoshita N, Mete O, et al. The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol 26(4):349–355, 2015.

    Article  CAS  PubMed  Google Scholar 

  8. De Lellis RA, Lloyd RV, Heitz PU et al. (eds) World Health Organization Classification of Tumours: pathology and genetics of tumours of endocrine organs. IARC Press, Lyon, p 9–47, 2004.

    Google Scholar 

  9. Zada G, Woodmansee WW, Ramkissoon S, Amadio J, Nose V, Laws ER Jr. Atypical pituitary adenomas: incidence, clinical characteristics, and implications. J Neurosurg 114(2):336–344, 2011.

    Article  PubMed  Google Scholar 

  10. Zaidi HA, Cote DJ, Dunn IF, Laws ER Jr. Predictors of aggressive clinical phenotype among immunohistochemically confirmed atypical adenomas. J Clin Neurosci 34:246–251, 2016.

    Article  CAS  PubMed  Google Scholar 

  11. Yildirim AE, Divanlioglu D, Nacar OA, Dursun E, Sahinoglu M, Unal T, Belen AD. Incidence, hormonal distribution and postoperative follow up of atypical pituitary adenomas. Turk Neurosurg 23(2):226–231, 2013.

    PubMed  Google Scholar 

  12. Chiloiro S, Doglietto F, Trapasso B, et al. Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2):143–150, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Del Basso De Caro M, Solari D, Pagliuca F, et al. Atypical pituitary adenomas: clinical characteristics and role of ki-67 and p53 in prognostic and therapeutic evaluation. A series of 50 patients. Neurosurg Rev 40(1):105–114, 2017.

    Article  PubMed  Google Scholar 

  14. Miermeister CP, Petersenn S, Buchfelder M, et al. Histological criteria for atypical pituitary adenomas—data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun 3:50, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G. Aggressive pituitary tumors. Neuroendocrinology 101(2):87–104, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Raverot G, Vasiljevic A, Jouanneau E, Trouillas J. A prognostic clinicopathologic classification of pituitary endocrine tumors. Endocrinol Metab Clin N Am 44(1):11–18, 2015.

    Article  Google Scholar 

  17. Vasiljevic A, Jouanneau E, Trouillas J, Raverot G. Clinicopathological prognostic and theranostic markers in pituitary tumors. Minerva Endocrinol 41(3):377–389, 2016.

    PubMed  Google Scholar 

  18. Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 49(2):R69–R78, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Lee CC, Vance ML, Lopes MB, Xu Z, Chen CJ, Sheehan J. Stereotactic radiosurgery for acromegaly: outcomes by adenoma subtype. Pituitary 18(3):326–334, 2015.

    Article  PubMed  Google Scholar 

  20. Mete O, Gomez-Hernandez K, Kucharczyk W, et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol 29(2):131–142, 2016.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Z, Ellis S, Lee CC, Starke RM, et al. Silent corticotroph adenomas after stereotactic radiosurgery: a case-control study. Int J Radiat Oncol Biol Phys 90(4):903–910, 2014.

    Article  PubMed  Google Scholar 

  22. Alahmadi H, Lee D, Wilson JR, et al. Clinical features of silent corticotroph adenomas. Acta Neurochir (Wien). 154(8):1493–1498, 2012.

    Article  Google Scholar 

  23. Scheithauer BW, Kovacs K, Horvath E, et al. Pituitary blastoma. Acta Neuropathol 116 (6):657–666, 2008.

    Article  PubMed  Google Scholar 

  24. Scheithauer BW, Horvath E, Abel TW, et al. Pituitary blastoma: a unique embryonal tumor. Pituitary 15(3):365–373, 2012.

    Article  PubMed  Google Scholar 

  25. Sahakitrungruang T, Srichomthong C, Pornkunwilai S, et al.. Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing’s disease. J Clin Endocrinol Metab 99(8):E1487–E1492, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. de Kock L, Sabbaghian N, Plourde F, et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128(1):111–122, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Peng P, Chen F, Zhou D, Liu H, Li J. Neurocytoma of the pituitary gland: A case report and literature review. Biomed Rep 3(3):301–303, 2015.

    PubMed  PubMed Central  Google Scholar 

  28. Boari N, Losa M, Mortini P, Snider S, Terreni MR, Giovanelli M. Intrasellar paraganglioma: a case report and review of the literature. Acta Neurochir (Wien). 148(12):1311–1314; discussion 1314, 2016.

    Article  Google Scholar 

  29. Dupuy M, Bonneville F, Grunenwald S, et al. Primary sellar neuroblastoma. A new case and review of literature. Ann Endocrinol (Paris). 73(3):216–221, 2012.

    Article  Google Scholar 

  30. Pernicone PJ, Scheithauer BW, Sebo TJ, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 79(4):804–812, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Ragel BT, Couldwell WT. Pituitary carcinoma: a review of the literature. Neurosurg Focus 16(4):E7, 2004.

    Article  PubMed  Google Scholar 

  32. Lopes MB, Scheithauer BW, Schiff D. Pituitary carcinoma: diagnosis and treatment. Endocrine 28(1):115–121, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Colao A, Ochoa AS, Auriemma RS, Faggiano A, Pivonello R, Lombardi G. Pituitary carcinomas. Front Horm Res38:94–108, 2010.

    Article  PubMed  Google Scholar 

  34. Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 22(4):443–453, 2012.

    Article  PubMed  Google Scholar 

  35. Asa SL, Casar-Borota O, Chanson P, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer 24(4):C5-C8, 2017.

    Article  CAS  PubMed  Google Scholar 

  36. Asa SL. Tumors of the Pituitary Gland. AFIP Atlas of Tumor Pathology, Series 4, Fascicle 15. Silver Spring, ARP Press. 2011.

    Google Scholar 

  37. Gomez-Hernandez K, Ezzat S, Asa SL, Mete Ö. Clinical Implications of Accurate Subtyping of Pituitary Adenomas: Perspectives from the Treating Physician. Turk Patoloji Derg 31 Suppl 1:4–17, 2015.

    PubMed  Google Scholar 

  38. Mete O, Asa SL. Therapeutic implications of accurate classification of pituitary adenomas. Semin Diagn Pathol 30(3):158–164, 2013.

    Article  PubMed  Google Scholar 

  39. Asa SL, Mete O. What’s new in pituitary pathology. Histopathology, 2017. In press.

  40. Howlett TA, Willis D, Walker G, Wass JA, Trainer PJ; UK Acromegaly Register Study Group (UKAR-3). Control of growth hormone and IGF1 in patients with acromegaly in the UK: responses to medical treatment with somatostatin analogues and dopamine agonists. Clin Endocrinol (Oxf). 79(5):689–699, 2013.

    CAS  Google Scholar 

  41. Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126, 2009.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Dahmani K, Mohammad S, Imran F, et al. Sellar Masses: An Epidemiological Study. Can J Neurol Sci 43(2):291–297, 2016.

    Article  PubMed  Google Scholar 

  43. Tjörnstrand A, Gunnarsson K, Evert M, et al. The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol 171(4):519–526, 2014.

    Article  PubMed  CAS  Google Scholar 

  44. Carroll PV, Jenkins PJ. Acromegaly. 2016. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc.; 2000- .Available from http://www.ncbi.nlm.nih.gov/books/NBK279097/

    Google Scholar 

  45. Potorac I, Petrossians P, Daly AF, et al. Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer 22(2):169–177, 2015.

    Article  CAS  PubMed  Google Scholar 

  46. Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J. Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol (Oxf). 77(1):72–78, 2012.

    Article  CAS  Google Scholar 

  47. Asa SL, Kucharczyk W, Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer 24(3):C1-C4.7, 2017.

    Article  PubMed  Google Scholar 

  48. Alband N, Korbonits M. Familial pituitary tumors. Handb Clin Neurol 124:339–360, 2014.

    Article  PubMed  Google Scholar 

  49. Hernández-Ramírez LC, Gabrovska P, et al. Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in AIP Mutation Carriers. J Clin Endocrinol Metab 100(9):E1242–E1254, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol 171(5):659–666, 2014.

    Article  CAS  PubMed  Google Scholar 

  51. Trivellin G, Daly AF, Faucz FR, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 371(25):2363–2374, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lodish MB, Trivellin G, Stratakis CA. Pituitary gigantism: update on molecular biology and management. Curr Opin Endocrinol Diabetes Obes 23(1):72–80, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rostomyan L, Daly AF, Petrossians P, et al. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer 22(5):745–757, 2015.

    Article  CAS  PubMed  Google Scholar 

  54. Puchner MJ, Lüdecke DK, Saeger W, Riedel M, Asa SL. Gangliocytomas of the sellar region—a review. Exp Clin Endocrinol Diabetes 103(3):129–149, 1995.

    Article  CAS  PubMed  Google Scholar 

  55. Salenave S, Boyce AM, Collins MT, Chanson P. Acromegaly and McCune-Albright syndrome. J Clin Endocrinol Metab 99(6):1955–1969, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vortmeyer AO, Gläsker S, Mehta GU, et al. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune-Albright syndrome. J Clin Endocrinol Metab 97(7):2404–2413, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salpea P, Stratakis CA. Carney complex and McCune Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 386(1–2):85–91, 2014.

    Article  CAS  PubMed  Google Scholar 

  58. Villa C, Lagonigro MS, Magri F, et al. Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation. Endocr Relat Cancer 18(3):347–356, 2011.

    Article  CAS  PubMed  Google Scholar 

  59. Obari A, Sano T, Ohyama K, et al. Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91, 2008.

    Article  PubMed  Google Scholar 

  60. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91(12):4769–4775, 2006.

    Article  CAS  PubMed  Google Scholar 

  61. Kovacs K, Ryan N, Horvath E, Singer W, Ezrin C. Pituitary adenomas in old age. J Gerontol 35(1):16–22, 1980.

    Article  CAS  PubMed  Google Scholar 

  62. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 386(1–2):2–15, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cuny T, Pertuit M, Sahnoun-Fathallah M, et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis. Eur J Endocrinol 168(4):533–541, 2013.

    Article  CAS  PubMed  Google Scholar 

  64. Trouillas J, Labat-Moleur F, Sturm N, et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol 32(4):534–543, 2008.

    Article  PubMed  Google Scholar 

  65. Duan K, Mete O. Familial endocrine tumor syndromes: Clinical and predictive roles of molecular histopathology. AJSP Reviews and Reports, 2017. In press.

  66. Verloes A, Stevenaert A, Teh BT, Petrossians P, Beckers A. Familial acromegaly: case report and review of the literature. Pituitary 1(3–4):273–277, 1999.

    Article  CAS  PubMed  Google Scholar 

  67. Beckers A, Lodish MB, Trivellin G, et al. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer. 22(3):353–367, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dénes J, Swords F, Rattenberry E, et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a largepatient cohort. J Clin Endocrinol Metab 100(3):E531–E541, 2015.

    Article  PubMed  CAS  Google Scholar 

  69. Daly AF, Tichomirowa MA, Beckers A. Update on familial pituitary tumors: from multiple endocrine neoplasia type 1 to familial isolated pituitary adenoma. Horm Res.;71 Suppl 1:105–111, 2009. Erratum in: Horm Res. 2009;71(5):297. Tichomirow, Maria A [corrected to Tichomirowa, Maria A].

    CAS  PubMed  Google Scholar 

  70. Lim JS, Ku CR, Lee MK, Kim TS, Kim SH, Lee EJ. A case of fugitive acromegaly, initially presented as invasive prolactinoma. Endocrine 38(1):1–5, 2010.

    Article  CAS  PubMed  Google Scholar 

  71. Horvath E, Kovacs K, Singer W, Smyth HS, Killinger DW, Erzin C, Weiss MH. Acidophil stem cell adenoma of the human pituitary: clinicopathologic analysis of 15 cases. Cancer 47(4):761–771, 1981.

    Article  CAS  PubMed  Google Scholar 

  72. Wang EL, Qian ZR, Yamada S et al. Clinicopathological characterization of TSH-producing adenomas: special reference to TSH-immunoreactive but clinically non-functioning adenomasEndocr Pathol 20: 209–220, 2009.

    Article  CAS  PubMed  Google Scholar 

  73. Scheithauer BW, Jaap AJ, Horvath E, et al. Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery. 47(3):723–729; discussion 729-30, 2000.

    CAS  PubMed  Google Scholar 

  74. Horvath E, Kovacs K, Killinger DW, Smyth HS, Platts ME, Singer W. Silent corticotropic adenomas of the human pituitary gland: a histologic, immunocytologic, and ultrastructural study. Am J Pathol 98(3):617–638, 1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cooper O. Silent corticotroph adenomas. Pituitary 18(2):225–231, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fountas A, Giotaki Z, Ligkros N, et al. Cushing’s Syndrome Due to CRH and ACTH Co-secreting Pancreatic Tumor—Presentation of a New Case Focusing on Diagnostic Pitfalls. Endocr Pathol 26(3):239–242, 2015.

    Article  PubMed  Google Scholar 

  77. Domingue ME, Marbaix E, Do Rego JL, et al. Infrasellar pituitary gangliocytoma causing Cushing's syndrome. Pituitary 18(5):738–744, 2015.

    Article  PubMed  Google Scholar 

  78. Mete O, Asa SL. Precursor lesions of endocrine system neoplasms. Pathology 45(3):316–330, 2013.

    Article  CAS  PubMed  Google Scholar 

  79. Schalin-Jäntti C, Asa SL, Arola J, Sane T. Recurrent acute-onset Cushing’s syndrome 6 years after removal of a thymic neuroendocrine carcinoma: from ectopic ACTH to CRH. Endocr Pathol 24(1):25–29, 2013.

    Article  PubMed  Google Scholar 

  80. Bayraktar F, Kebapcilar L, Kocdor MA, et al. Cushing’s syndrome due to ectopic CRH secretion by adrenal pheochromocytoma accompanied by renal infarction. Exp Clin Endocrinol Diabetes 114(8):444–447, 2006.

    Article  CAS  PubMed  Google Scholar 

  81. O'Brien T, Young WF Jr, Davila DG, et al. Cushing’s syndrome associated with ectopic production of corticotrophin-releasing hormone, corticotrophin and vasopressin by a phaeochromocytoma. Clin Endocrinol (Oxf). 37(5):460–467, 1992.

    Article  Google Scholar 

  82. Winters SJ, Vitaz T, Nowacki MR, Craddock DC, Silverman C. Addison’s Disease and Pituitary Enlargement. Am J Med Sci 349(6):526–529, 2015.

    Article  PubMed  Google Scholar 

  83. Fan S, Jiang Y, Yao Y, Wang R, Xing B. Pituitary ACTH-secreting adenoma in Addison’s disease: a case report. Clin Neurol Neurosurg 115(12):2543–2546, 2013.

    Article  PubMed  Google Scholar 

  84. Seltzer J, Ashton CE, Scotton TC, Pangal D, Carmichael JD, Zada G. Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 38(2):E17, 2015.

    Article  PubMed  Google Scholar 

  85. Liu W, Asa SL, Ezzat S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 12(4):412–419, 2002.

    Article  CAS  PubMed  Google Scholar 

  86. Komatsubara K, Tahara S, Umeoka K, Sanno N, Teramoto A, Osamura RY. Immunohistochemical analysis of p27 (Kip1) in human pituitary glands and in various types of pituitary adenomas. Endocr Pathol 12(2):181–188, 2001.

    Article  CAS  PubMed  Google Scholar 

  87. Dahia PL, Aguiar RC, Honegger J, et al. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16(1):69–76, 1998.

    Article  CAS  PubMed  Google Scholar 

  88. Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat Genet 47(1):31–38, 2015.

    Article  CAS  PubMed  Google Scholar 

  89. Perez-Rivas LG, Theodoropoulou M, Ferraù F, et al. The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing’s Disease. J Clin Endocrinol Metab 100(7):E997–1004, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma ZY, Song ZJ, Chen JH, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 25(3):306–317, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hayashi K, Inoshita N, Kawaguchi K, et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol 174(2):213–226, 2016.

    CAS  PubMed  Google Scholar 

  92. Annamalai AK, Dean AF, Kandasamy N, et al. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary 15(3):276–287, 2012.

    Article  CAS  PubMed  Google Scholar 

  93. Salehi F, Scheithauer BW, Moyes VJ, et al. Low immunohistochemical expression of MGMT in ACTH secreting pituitary tumors of patients with Nelson syndrome. Endocr Pathol 21(4):227–229, 2010.

    Article  CAS  PubMed  Google Scholar 

  94. Yamada S, Ohyama K, Taguchi M, Takeshita A, Morita K, Takano K, Sano T. A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61(3):580–584; discussion 584-5, 2007.

    Article  PubMed  Google Scholar 

  95. Young W F, Scheithauer B W, Kovacs K et al. Gonadotroph adenoma of the pituitary gland: a clinicopathologic analysis of 100 cases. Mayo Clin Proc 71: 649–656, 1996.

    Article  PubMed  Google Scholar 

  96. Balogun JA, Monsalves E, Juraschka K, et al. Null cell adenomas of the pituitary gland: an institutional review of their clinical imaging and behavioral characteristics. Endocr Pathol 26(1):63–70, 2015.

    Article  PubMed  Google Scholar 

  97. Horvath E, Kovacs K, Smyth HS et al. A novel type of pituitary adenoma: morphological features and clinical correlations. J Clin Endocrinol Metab 166:1111–1118, 1988.

    Article  Google Scholar 

  98. Horvath E, Kovacs K, Smyth HS et al. Silent adenoma subtype 3 of the pituitary—immunohistochemical and ultrastructural classification: a review of 29 cases. Ultrastruct Pathol 29:511–524, 2005.

    Article  CAS  PubMed  Google Scholar 

  99. Erickson D, Scheithauer B, Atkinson J et al. Silent subtype 3 pituitary adenoma: a clinicopathologic analysis of the Mayo Clinic experience. Clin Endocrinol (Oxf) 71:92–99, 2009.

    Article  CAS  Google Scholar 

  100. Fealey ME, Scheithauer BW, Horvath E, Erickson D, Kovacs K, McLendon R, Lloyd RV. MGMT immunoexpression in silent subtype 3 pituitary adenomas: possible therapeutic implications. Endocr Pathol 21(3):161–165, 2010.

    Article  CAS  PubMed  Google Scholar 

  101. NGS in PPGL (NGSnPPGL) Study Group, Toledo RA, Burnichon N, et al. Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol. 13(4):233–247, 2017.

    Google Scholar 

  102. Duan K, Mete O. Algorithmic approach to neuroendocrine tumors in targeted biopsies: Practical applications of immunohistochemical markers. Cancer 124(12):871–884, 2016.

    PubMed  Google Scholar 

  103. Hayashi T, Mete O. Head and Neck Paragangliomas: What does the pathologist need to know? Diagn Histopathol 20(8):316–325, 2014.

    Article  Google Scholar 

  104. Covington MF, Chin SS, Osborn AG. Pituicytoma, spindle cell oncocytoma, and granular cell tumor: clarification and meta-analysis of the world literature since 1893. AJNR Am J Neuroradiol 32(11):2067–2072, 2011.

    Article  CAS  PubMed  Google Scholar 

  105. Lee EB, Tihan T, Scheithauer BW, Zhang PJ, Gonatas NK. Thyroid transcription factor 1 expression in sellar tumors: a histogenetic marker? J Neuropathol Exp Neurol 68(5):482–488, 2009.

    Article  CAS  PubMed  Google Scholar 

  106. Mete O, Lopes MB, Asa SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 37(11):1694–1699, 2013.

    Article  PubMed  Google Scholar 

  107. Takei Y, Seyama S, Pearl GS, Tindall GT. Ultrastructural study of the human neurohypophysis. II. Cellular elements of neural parenchyma, the pituicytes. Cell Tissue Res 205(2):273–287, 1980.

    Article  CAS  PubMed  Google Scholar 

  108. Saeed Kamil Z, Sinson G, Gucer H, Asa SL, Mete O. TTF-1 expressing sellar neoplasm with ependymal rosettes and oncocytic change: mixed ependymal and oncocytic variant pituicytoma. Endocr Pathol 25(4):436–438, 2014.

    Article  PubMed  Google Scholar 

  109. Vergès B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 87(2):457–465, 2002.

    Article  PubMed  Google Scholar 

  110. Stratakis CA, Tichomirowa MA, Boikos S, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 78(5):457–463, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer 19(6):C33–C40, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu R, Melmed S. Oncogene activation in pituitary tumors. Brain Pathol 11(3):328–341, 2001.

    Article  CAS  PubMed  Google Scholar 

  113. Suhardja A, Kovacs K, Rutka J. Genetic basis of pituitary adenoma invasiveness: a review. J Neuro-Oncol 52(3):195–204, 2001.

    Article  CAS  Google Scholar 

  114. Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F, Lloyd RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol 18(4):217–222, 2007.

    Article  CAS  PubMed  Google Scholar 

  115. Levy A, Hall L, Yeudall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf). 41(6):809–814, 1994.

    Article  CAS  Google Scholar 

  116. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236):692–696, 1989.

    Article  CAS  PubMed  Google Scholar 

  117. Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: focus on G-protein mutations. Exp Biol Med 228: 1004–1017, 2003.

    Article  CAS  Google Scholar 

  118. Iacovazzo D, Caswell R, Bunce B, et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4(1):56, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Mete.

Ethics declarations

Disclosures

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mete, O., Lopes, M.B. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol 28, 228–243 (2017). https://doi.org/10.1007/s12022-017-9498-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-017-9498-z

Keywords

Navigation