
1

SHYBRID: A graphical tool for generating hybrid ground-truth

spiking data for evaluating spike sorting performance

Jasper Wouters1, Fabian Kloosterman2,3,4 and Alexander Bertrand1

Abstract—Spike sorting is the process of retrieving the spike

times of individual neurons that are present in an extracellular

neural recording. Over the last decades, many spike sorting

algorithms have been published. In an effort to guide a user

towards a specific spike sorting algorithm, given a specific

recording setting (i.e., brain region and recording device), we

provide an open-source graphical tool for the generation of

hybrid ground-truth data in Python. Hybrid ground-truth data is

a data-driven modelling paradigm in which spikes from a single

unit are moved to a different location on the recording probe,

thereby generating a virtual unit of which the spike times are

known. The tool enables a user to efficiently generate hybrid

ground-truth datasets and make informed decisions between

spike sorting algorithms, fine-tune the algorithm parameters

towards the used recording setting, or get a deeper understanding

of those algorithms.

I. INTRODUCTION

After more than a century of brain research, and despite

many breakthroughs, it is still largely unknown how brain

activity gives rise to cognition. To aid researchers in getting a

better understanding of brain function, many techniques have

been developed to look at neuronal activity dynamics. Al-

though recent techniques, such as calcium imaging, are getting
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increasingly popular, electrophysiology is still indispensable

because it has the highest available temporal resolution among

other available techniques. Electrophysiological recordings

allow researchers to look at brain activity at a time scale that

reveals neuronal action potentials in great detail. To increase

the spatial extent of such electrophysiological recordings,

recently recording hardware has undergone a drastic evolution

leading to high-density neural probes [1] [2].

Most commonly, extracellular recordings are performed by

inserting an array of electrodes into the brain. Electrodes that

are in close proximity to a neuron will pick up a transient

potential, referred to as a spike, when the neuron fires an

action potential. Such action potentials are believed to be

the main mechanism of communication between neurons. By

measuring spikes from several neurons, one can try to get

a better understanding of information processing in neuronal

circuits. However, typically many neurons surround a single

electrode, leading to spikes from several neurons to be picked

up by the same electrode. On the other hand, in high-density

recordings a spike from a single neuron is picked up by

multiple electrodes. To resolve the mixture of spikes from

several neurons and extract the spike times of the individual

neurons embedded in the recordings, a spike sorting [3] [4]

algorithm can be applied to the electrophysiological recording.

A reliable recovery of the spike trains of individual neurons,

enables a wide range of analysis [5] that ultimately advance

our understanding of the brain [6] [7] [8]. Furthermore, a better

understanding of the brain at the level of single neurons can

create clinical impact [9] [10].

Over the last two decades a myriad of spike sorting [11]

[12] [13] [14] [15] [16] [17] [18] [19] algorithms have been
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published. The development of these spike sorting algorithms

has been driven by both the availability of novel computational

methods [20] [21], as well as the ongoing evolution in the

channel count and density of recording equipment [1] [2]. This

has led to a broad spectrum of spike sorting algorithms, each

with their own (dis)advantages, and often with only subtle

differences in their underlying mechanisms. As a result, spike

sorting users are often left pondering which algorithm they

should use to get the spike sorting job done on their specific

data.

The question which algorithm and parameters to use in a

particular setting, usually boils down to the question which

spike sorting package is the most performing in terms of spike

sorting accuracy and computational complexity. Unfortunately,

the question related to the spike sorting accuracy is a hard one

to answer, due to the lack of thorough comparative studies. In

the past, initiatives for spike sorting validation have been set

up [22] [23], but they have not led to a systematic validation

of recent spike sorting algorithms. One of the reasons for

the lack of such comparative studies is the absence of an

extensive collection of ground-truth data. Two main paradigms

for generating ground-truth data are in use: paired recordings

[24] [25] [26] and simulation-based ground-truth data [27] [28]

[29] [30] [31]. Both paradigms have their limitations as will

be discussed next.

In paired recordings a single neuron is isolated (preferably

in vivo) using a high signal-to-noise single cell approach, such

as intracellular or juxtacellular recordings, that provides an

accurate record of the targeted cell’s spike times. Another

recording device, e.g., a neural probe, is then lowered into

the brain in close vicinity to the isolated neuron. This probe

recording is analysed with a spike sorting algorithm, which

can be partially validated using the ground-truth spike times

obtained from the intracellularly or juxtacellularly recorded

cell. The problem with paired recordings is that they involve

an expensive, time consuming procedure. The procedure often

fails, as it is very difficult to register the activity of the cell on

both recording devices. For the paired recording to succeed, a

very precise mutual positioning of both recording devices is

required. Note that paired recordings have also been performed

in vitro in the context of spike sorting validation [18], which

could alleviate some of the experimental difficulties when

compared to the in-vivo procedure.

It also remains unclear whether an algorithm’s spike sorting

accuracy for data with a specific recording setting is indicative

for its accuracy using data recorded under a different setting.

The recording setting is defined by both the brain region of in-

terest as well as the recording equipment. Differences between

brain regions, e.g., the differences in cell type distribution and

cell density, will affect the extracellular recording content.

Also different experimental protocols can cause changes in

the local spiking activity. Differences in recording equipment,

such as different probe channel layouts and channel densities,

will naturally lead to a different spike feature space, i.e., the

information that is used to assign detected spikes to single-

unit spike clusters. The data acquisition system that is used

will add electronics noise to the recording. The characteristics

of such electronics noise can vary between different models

of acquisition systems, or even between different acquisition

systems of the same model. All of the above factors will

influence the final recording, and as such will also affect the

spike sorting results and performance. The recording setting

intrinsics thus prevent us from generalizing spike sorting

accuracy obtained on paired recordings.

As opposed to paired recordings, ground-truth data gen-

erated from computational simulations are more flexible in

coping with changing recording settings. The downside of

simulated data is that they often lack the richness of real

recordings. To ameliorate this problem, background noise can

be extracted from real recordings [32], while spikes that are

generated from computational neuronal models are superim-

posed. Although such an approach improves the richness of the

data, obtaining realistic simulations that are representative for

a specific recording setting requires modelling expert knowl-

edge. This is especially the case if realistic spike timing and

scaling statistics are of interest. If realistic variations among

spikes from different neurons are desired, morphologically

detailed models have to be acquired, a process which is non-
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trivial and time-consuming. However, several large efforts have

been undertaken to provide the community with a public

collection of biophysically detailed neuron models [33] [34]

[35].

Here, we present an open-source graphical tool which

allows spike sorting users to transform their own recordings

into ground-truth data in an efficient and controlled fashion.

The ground truth generation paradigm which is used in our

tool, is the so-called hybrid data paradigm that has been

used for the validation of some spike sorting algorithms

[14] [15]. The generation of such ground-truth data is a

delicate process, which at least requires visual feedback on

the generated ground truth and ideally some user interaction

to make the key decisions during the generation process.

Hybrid data does not rely on computational models, nor does

it suffer from the complexity of obtaining paired recordings.

Hybrid data generation can be seen as a data-driven modelling

approach: spike templates, spike timings and scalings are

directly extracted from the data. As such, the ground-truth

data that is generated is automatically tailored to the user’s

recording setting. This ground-truth data can then be used to

make an informed decision on which spike sorting algorithm

is most suitable for a specific recording setting, fine-tune the

algorithm parameters towards the used recording setting, or

get a deeper understanding of those algorithms.

The tool takes as an input the raw data and initially cu-

rated spike sorting results, e.g., obtained from manual cluster

cutting. As a first step a template is calculated for every single-

unit spike train. Next, the user visually inspects the template

fit for a selection of spikes in the corresponding spike train.

If the scaled template model is deemed reasonable, the user

moves the entire unit, i.e., the combination of the spike train

and its corresponding template, to a different spatial location

on the probe. The final step of relocating the unit is key for

the relocated unit to be considered as a valid ground-truth

unit. For the original unit, one can not make this ground-truth

assumption. Indeed, in the initial spike sorting results, one

can easily classify a spike cluster as originating from a single

neuron, but it is a lot harder to show that all spikes from

the specific neuron are present in the cluster. Such missed

detections (false negatives) in the initial sorting might be

erroneously interpreted as false positives when the original

recording and initial spike sorting are used for the validation

of other (and potentially better) spike sorters. By changing the

spatial location of the hybrid unit with respect to the original

unit, this problem is bypassed because the spatial footprint of

the hybrid unit is different now from the spatial footprint of

the original unit, and as such potential false negatives in the

initial sorting are very unlikely to interfere with the hybrid

unit in terms of spike sorting.

A main advantage of the presented tool is the visual feed-

back that is provided throughout the hybrid data generation.

The visual feedback allows a user to closely monitor and

control the hybrid data quality. For example, visual feedback

of the spike rate of every individual channel allows a user to

control the spike sorting difficulty of the hybrid unit. Inserting

a hybrid unit into a silent spatial region of the probe will

likely be easier to sort than inserting a hybrid unit in a very

active spatial region. The tool is also capable of fully automatic

hybrid ground-truth data generation for use cases where less

control is acceptable. An efficient method is included to

validate spike sorting results obtained on the generated hybrid

ground-truth data. The tool is easy to use and freely available1,

which will enable a broad audience to generate recording

setting-specific ground-truth data for improving their spike

sorting related research.

In this work we will focus on generating hybrid data from

high-density neural probe recordings. However, the tool is by

no means limited to neural probes, it can be used without any

modification on various other multi-channel recording devices,

e.g., microelectrode arrays (MEAs) [36] [37]. This work as a

whole might also be useful outside of the field of neuronal

spike sorting. The validation of sEMG [38] decomposition

algorithms [39] [40], i.e., algorithms for sorting motor unit

action potentials that are measured using electrode arrays

placed on the skin on top of muscle tissue, might also benefit

from the availability of hybrid ground-truth data.

1The tool is available on https://github.com/jwouters91/shybrid.

https://github.com/jwouters91/shybrid
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The hybrid ground-truth model is discussed in depth in the

following section. In Section III a graphical tool is introduced

that implements this hybrid model. Section IV contains a

case study where ground-truth data generated with the user

interface is used to compare and study spike sorting algo-

rithms. Finally, the proposed method and results are discussed

in Section V.

II. HYBRID GROUND-TRUTH MODEL

Before introducing the graphical tool for spiking hybrid

ground-truth data generation, we will first introduce and for-

malize our hybrid ground-truth model. The basic idea behind

the generation of hybrid data [14] [15] is to remove single-

unit spikes from one location of the probe and re-introduce

them at another location with an additional temporal offset. We

thus create a fictitious neuron of which the spike waveforms

are modelled as scaled spike templates estimated from the

initial spike sorting results. This unit is then injected at another

location on the probe to prevent false negatives (i.e. spikes

from the original neuron that were not identified) in the initial

spike sorting results from being wrongly interpreted as false

positives when later using the hybrid data for evaluating spike

sorting performance. This spatial migration is sufficient for de-

coupling the fictitious neuron from its donor neuron for spike

sorting purposes. This approach depends on the availability of

initial spike sorting results for the given recording, containing

manually verified single-unit clusters. In this way ground-truth

data, which has both realistic spike and noise related statistics,

can be made without modelling effort.

The input high-pass filtered extracellular recording that will

serve as a basis for the hybrid ground-truth data is denoted

by the matrix X ∈ RT×N , with T the duration in samples

of the recording and N the number of recording channels.

The vector xc ∈ RT contains the elements from the cth

column of X, i.e., it contains the data recorded on channel

c. A single sample from channel c at discrete time k is

represented by xc [k]. Let’s consider a single channel signal

slice x̄c [k] = [xc [k −K] . . . xc [k +K]]
T ∈ RL centered

around k, where L = 2K+1 denotes the slice length, i.e., the

so-called temporal window size in samples.

Initial spike sorting results are required for the estimation of

the spike templates. The initial spike sorting results consist of

a set of spike times S(n) for every known single-unit cluster

n. Consider the spike snippets matrix S
(n)
c which contains in

its columns all spike snippets x̄c [s] ∀s ∈ S(n). The spike

template t
(n)
c of a single-unit cluster n on channel c can then

be estimated as follows:

t(n)c = med S(n)
c , (1)

where the median operator acts on each row of the spike

snippets matrix, such that t(n)c ∈ RL.

Next, for every channel c, the template energy Ec =

t
(n)
c

T
t
(n)
c is calculated and the maximum energy Emax =

maxcEc over all channels is determined. The channels in the

template that contain relatively little energy, are considered to

be noise channels and are zero-forced based on the following

maximum energy criterion:

∀c | Ec < αEmax : t(n)c ← 0, (2)

where α is the so-called zero force fraction (e.g., α = 0.03).

This zero-forcing results in a more localized spike template.

Next, the optimal template scaling for every spike snippet

used during the template estimation is calculated. This tem-

plate scaling will be used both when subtracting and inserting

units during the hybridization process. The optimal scaling is

given by the least squares fitting factor β(n)
s and minimizes

the following least squares optimization problem:

min
β
(n)
s

∑
c

∥∥∥x̄c [s]− β(n)
s t(n)c

∥∥∥2
2
. (3)

The solution to (3) is given by the following expression:

β(n)
s =

∑
c x̄c [s]

T
t
(n)
c∑

c t
(n)
c

T
t
(n)
c

. (4)

Before inserting the hybrid spikes into the recording, for

every spike time used during the template estimation, the fitted

template is subtracted from the data. Although this step is not

strictly necessary, this subtraction will prevent the total energy
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in the final hybrid recording from increasing. The subtracted

signal sc [k] is given by:

sc [k] = xc [k]−∑
n

∑
s∈S(n)

K∑
m=−K

δ [k − (s+m)]β(n)
s t(n)c [m] ,

(5)

where δ [k] is the Kronecker delta, i.e., δ [k] = 1 if k = 0 and

δ [k] = 0 if k 6= 0.

The next step in the process of generating the hybrid ground

truth is to change the spatial location of the spike template.

In order to facilitate this spatial migration, some assumptions

about the probe geometry have to be made. For every probe

a rectangular grid model is assumed (non-rectangular probes

are supported, but will be internally treated as rectangular

grids, see below). The grid model requires that all recording

electrodes for a certain probe lie on the intersection of an

imaginary rectangular grid, as depicted in Fig. 1A. However,

not every intersection point has to be occupied by an electrode,

thereby allowing to model probes with broken or missing

electrodes, or probes with a non-rectangular electrode grid.

Furthermore, the model assumes that the horizontal distance

between the intersection points is constant. Also the vertical

distance between intersection points has to be constant, but

this vertical distance can differ from the horizontal constant

distance.

From the above assumptions a probe graph model can be

built. For every empty location on the grid a missing electrode

is added to the graph model. In such a graph model every

electrode is aware of its neighbouring (missing) electrodes,

such that the template can be easily shifted in every direction

on the probe.

A template shift is characterized by a number of moves

along the horizontal axis in a certain direction and a number

of moves along the vertical axis in a certain direction. For the

horizontal axis moving the template to the right is represented

by a positive number and moving to the left by a negative

number. Moving up is represented by a positive number of

moves, while moving down has a negative sign. The shifted

template t
(n)
c,(x,y) is obtained from shifting horizontally by

x and shifting vertically by y. Fig. 1B gives a schematical

working electrode

broken or missing electrode

0

0

0

0

value derived through interpolation before shift

A B

value derived through extrapolation before shift

Fig. 1. A: The probe grid model assumes that all electrodes (green dots)

are located on intersections of a grid. The distance between grid lines along

a certain axis is assumed to be constant. Not every intersection has to

be populated by an electrode (grey dots). B: Moving the template over

the probe consist of shifting the template over the grid. The black arrows

represent shifting a template one position to the left. At the right side of

the probe extrapolated waveforms (blue dots and arrows) are introduced into

the template, while on the left side, a part of the template is lost. Missing

channels that are shifted onto working electrodes contain a value obtained

through interpolation (orange dots and arrows).

representation of t
(n)
c,(−1,0). The black arrows in the figure

indicate the spatial pseudo-permutation, note how extrapolated

waveforms enter the shifted template (here by template we

mean the set
{
t
(n)
c ∀ c

}
) on the right side of the probe

and how template information is dropped on the left side of

the probe. Template extrapolation is performed to gracefully

handle spikes at the edge of the probe, that might otherwise

cause edge effect artefacts in case zero-padding is used rather

than extrapolation. The extrapolated waveforms result from

averaging over the neighbouring working electrodes (see blue

discs in Fig. 1B) and an equal amount of fictitious electrodes

containing all zeros to guarantee a major attenuation of the

extrapolated waveforms when compared to their working

neighbours. Missing channels that are shifted onto working
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electrodes contain a value obtained through interpolation (see

orange discs in Fig. 1B). The interpolated value equals the

average over all working neighbouring channels, as is schemat-

ically represented in Fig. 1B by the orange arrows.

Typically, the set of scaling parameters β(n)
s contains vari-

ous outliers, e.g., caused by fitting the template on a segment

that is deformed by the presence of overlapping spiking

activity from other neurons. To prevent outliers in β(n)
s from

propagating into the generated ground-truth data, only a subset

of S(n) should be considered for reinsertion. This subset is

derived by choosing a lower bound l(n)β and upper bound u(n)β

for the template scaling factor β(n)
s and setting β

(n)
s = 0 for

all the spike times s ∈ S(n) for which β
(n)
s /∈

[
l
(n)
β , u

(n)
β

]
,

thereby effectively discarding those spikes from S(n).

Prior to the insertion of the ground truth spikes in the

recording, a temporal within-sample-time jittering is applied

to the template for every s ∈ S(n). This jittering is obtained

by first upsampling the template by a factor of 10, then

applying a random within-sample-time shift sampled from a

uniform distribution to the upsampled template, and finally,

downsampling the template to the original sampling frequency.

This temporal jittering models the fact that the occurrence

of spikes are not phase locked with the sample clock of the

analog-to-digital converter. The jitter operator is represented

by the non-linear function js : RL 7→ RL, where the

dependency on s is required to guarantee that for a certain

spike time s all samples of the template are jittered by the

same amount and because the random time shift is different for

each s ∈ S(n). Finally, the hybrid data can be mathematically

expressed as follows:

hc [k] = sc [k] +

∑
n γ

(n)∑
s∈S(n)

∑K
m=−K δ[k−(s+Toffset+m)]β(n)

s js
(
t
(n)

c,(x,y)
[m]
)
,

(6)

where we introduced an additional time offset Toffset to all

remaining spike times before re-inserting them at the new

location in order to decorrelate them with possible spike

residues at the original location. γ(n) is an optional user-

defined scaling parameter to control the signal-to-noise-ratio

(SNR) of the resulting hybrid unit associated with the neuron

n. The default value is set to γ(n) = 1.

III. GUI FOR HYBRID DATA GENERATION

The generation of ground-truth data is a delicate process,

which at least requires visual feedback on the generated

ground truth and ideally some user interaction to make the

key decisions during the generation process. For this reason

we developed a Python-based GUI called SHYBRID (spike

hybridizer) to support spike sorting users and developers with

the generation of ground-truth data, so that they gain more

insight into how spike sorting algorithms behave on certain

data. This section elaborates on the typical usage flow of the

tool. The following topics will be discussed in the different

subsections: which input data to provide, how to visualize

and adapt the template, why and how to choose bounds on

template scaling, and what to consider when moving a unit

across a probe. We will also touch on functionality to import

and export templates for additional flexibility. Finally, we will

discuss the tool’s functionality for the automatic assessment of

spike sorting algorithms. This section only gives an overview

of the above concepts, more detailed usage-related information

can be found in the user manual that is provided with the tool.

A. Input data

The user interface depends on four different inputs:

1) an extracellular multi-channel recording in binary format

2) the recording’s probe file

3) initial spike sorting results

4) a parameter file

The provided binary recording is assumed to be high-

pass filtered. This high-pass filtering is standard practice in

spike detection and spike sorting pipelines, as it is needed

to attenuate the power dominant low frequency oscillations

present in raw neural recordings. Without proper filtering, it

would be difficult to reliably extract spike templates from

the recording, which are the key building blocks for hybrid

data generation. Only binary recordings that encode the signal

samples using a signed data type are supported.
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Fig. 2. Spike templates (and recording snippets) are visually organized

according to the channel geometry of the recording device. The different rows

and columns in the visualization correspond to the rows and columns of the

recording device. The waveform duration (horizontal axes) is controlled by

the user. The waveform amplitude (vertical axes) is automatically scaled to

provide a clean visualization. The relative waveform amplitude with respect

to the recording noise is available from the SNR that is calculated and shown

for every spike template.

The application’s centerpiece is an intuitive data visualiza-

tion widget. Signal snippets are plotted as if they are drawn on

the probe (see Fig. 2). This visualization requires information

about the geometry of the probe as described in the probe

file [41] in a structured text format. This file format is used

by some spike sorting algorithms already, so there are many

probe files available for various neural recording devices. The

probe file can also be used to inform the tool about broken/bad

channels that are present in the recording, and are to be ignored

during the hybridization process. Note that the tool is only

compatible with single shank probe files. Some probe files

also provide a probe graph. The SHYBRID will ignore any

graph present in the probe file and will build its own. This

graph is built from the geometry related grid assumptions as

introduced in Section II.

The initial spike sorting results are a collection of manually

curated single-unit clusters. A cluster consists of a unique

integer identifier and the cluster’s corresponding spike times

(given in samples). The initial spike sorting results can be

loaded using either a custom CSV-file or by supplying a path

to the folder containing the phy compatible data [41] in the

template-gui format2 (i.e., a de facto standard for spike sorting

results). The CSV-file has to consist of two columns, where

the first column contains the cluster identifier and the second

column contains a corresponding discrete spike time. From a

CSV-file all clusters are loaded into the application. When

using the phy compatible initial spike sorting results, only

clusters that are labeled as “good” will be loaded.

Finally, the parameter file links all of the above files

together as illustrated in Listing 1. On top of that, it contains

additional recording-related parameters that are needed by the

application, such as the recording’s sampling frequency and

data type. The parameter file has to have the same file name

as the binary recording file, and requires a .yml extension,

indicating that its content is structured using the YAML format.

---

# parameters used by SHYBRID

# recording data related

data:

# sampling frequency

fs: 25000

# recording data type

dtype: int16

# recording matrix to linear storage

# conversion order:

# row-major (C) or colum-major (F)

order: C

# path to probe file

probe: /path/to/probe.prb

# initial spike sorting results

clusters:

# path to initial sorting csv

csv: /path/to/clusters.csv

...

Listing 1. An example parameter file in the YAML format.

B. Visualizing the template

After loading the input data, a spike template can be drawn

for a single-unit spike cluster of choice. Details on how

the template is estimated can be found in Section II. Two

2Please consult the phy documentation for more information about the

template-gui format.

https://phy.readthedocs.io/en/latest/
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Fig. 3. A: Template temporal window length given in milliseconds. B:

Altering the zero force fraction changes the spatial extent of the template.

important parameters that affect the template estimate can be

altered in the tool as shown in Fig. 3.

The first parameter that has to be explicitly chosen is

the temporal window length. Changing this window length

will change the number of consecutive samples on every

channel around a single spike occurrence as used for template

estimation and visualization. For generating hybrid data, this

window length should be sufficiently large. Within the tempo-

ral window, the signal on every channel of the template should

return to zero on both sides, this is to ensure that the complete

spike template is caught in the given window. Choosing an

appropriate window size will limit residual artefacts that occur

during the process of hybrid data generation.

The second template related parameter that can be altered

is the zero force fraction. Usually a spike template as seen

on a probe is spatially sparse, i.e., some channels of the

template are dominated by spiking activity, whereas others

are dominated by noise. To eliminate any effect of these noise

channels further down the pipeline, the tool tries to zero-

force the noise channels. Typically these noisy channels are

considerably lower in terms of signal energy. The software

determines the signal energy for every channel of the template

separately. From these energies the maximum energy is then

determined. All channels that contain less energy than the

given zero force fraction of the maximum template channel

energy, are explicitly set to zero. As such the spatial extent of

the template is determined from the data, instead of relying on

an a-priori chosen spatial extent. The zero force fraction is set

to 3% by default. Depending on the SNR of the recording,

this fraction might have to be adjusted to reflect the true

spatial footprint of the spike template. Increasing the zero

force fraction (e.g., in case of a recording with low SNR)

will eventually lead to more channels being set to zero.

After the template estimation process, the template is visu-

alized as shown in Fig. 2. Only non-zero forced channels are

emphasized (in blue) in the visualization.

C. Inspecting template fit

A second step in the generation of hybrid data is to inspect

how well a template fits the underlying data from which it

was estimated. This is important to verify whether the scaled

template model that is used for the generation of hybrid data

is valid for the given cluster. For every data chunk that was

used for the estimation of the template, an optimal template

scaling factor is determined that minimizes the squared error

between the data chunk and the scaled template (see Section

II).

In the inspect template fit display mode, the scaled template

(blue) is plotted on top of a signal chunk (red) containing a

spike that was used during the template estimation process

(see Fig. 4). By using the left and right arrow buttons (or

the bottom slider) the user can browse through all the data

chunks that were used for the estimation of the template.

In this way the user can assess whether the scaled template

sufficiently models the underlying data. To avoid that the user

has to go exhaustively through all the chunks, the data chunk

browsing order is determined by the fitting factor β(n)
s , where

moving the slider to the right corresponds to an increasing

fitting factor.

The reason that we opted for this ordering is that often, both

very low and high fitting factors are likely to be the reflection

of a spurious template fit. Such a spurious template fit is
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typically caused by either false positives in the provided spike

sorting results or are due to spatio-temporally overlapping

spikes. Because of the ordering that is in use here, bounds

can be easily identified and set on the fitting factors. The

red profile at the bottom of the plotting area (see Fig. 4)

is a visual representation of the ordered fitting factors for

all data chunks. A user is adviced to start from the lowest

scaling factor and move upwards until a nicely fitting signal

chunk is identified. This chunk can then be set as the lower

bound. After choosing a lower bound, the user can start from

the maximum fitting factor and repeat the previous procedure

in a downwards fashion. Only the spikes within the optional

bounds will be considered during the hybridization process.

This feature allows the user to have precise control over the

scaling factor range, preventing unrealistic scaling factors from

entering the hybrid data.

Because overlapping spikes will often cause unrealistic

fitting factors, one might think that applying bounds on the

fitting factors might exclude those interesting overlapping

spike times from the hybridization process. However, since

the spike template is spatially moved before the hybrid spikes

are reinserted, it is very likely that new spatio-temporal overlap

arises in the region to which the template is shifted.

D. Relocating the unit

Once the validity of the scaled template model for the active

cluster has been assessed, the unit has to be relocated on the

probe. This action is fundamental for the generation of hybrid

data, as mentioned before. Moving the unit along the probe

also allows for the reintroduction of overlapping spikes, i.e., by

moving the fictitious neuron to a location on the probe where

there is a high spiking activity. To aid the user in choosing

where to move the unit to, the average spike rate on every

electrode is calculated and represented visually in the relocate

unit view. By moving the unit to a busy region of the probe, it

is more likely that spike overlap occurs for the hybrid neuron.

If a unit is moved to a silent region, the hybrid spikes are more

likely to be easily separable. This allows a user to control the

difficulty level for the spike sorting algorithm under test. In our

illustrative example, the unit that is shown in Fig. 4 is moved

to a region with lower average spiking activity as shown in Fig.

5. The user can also control the difficulty level by enforcing

a custom peak-SNR for the resulting hybrid unit. The peak-

SNR is defined in Appendix C. By default, the peak-SNR is

displayed corresponding to the default value γ(n) = 1 in (6),

which means the original amplitude of the spike template is

kept.

After a unit is moved from its original spatial location, it has

to be reinserted into its new location. A unit reinsertion first

subtracts the original fitted templates from the recording after

which the spikes within the template scaling factor bounds are

reinserted at the new location. The spike times at which the

scaled shifted templates are inserted are equal to the original

spike times offset by an arbitrary constant that equals two

times the temporal window length. As discussed in Section

II, this offset is added to prevent the residual artefact after

subtraction from interfering with the hybrid cluster template.

This reinsertion will also create a CSV-file that keeps track of

the hybrid ground-truth spike times. Note that the reinsertion is

immediately applied to the provided recording and overwrites

the binary data file. A reinsertion can always be undone if the

resulting hybrid unit is not satisfactory, e.g., when the provided

custom SNR is deemed unrealistic after inspecting the hybrid

spike chunks.

E. Auto hybridization

For long recordings containing dozens of manually curated

single-unit clusters, the full user guided hybridization process

is a lengthy procedure. Although we believe it is advisable

to have a user making the key decisions, we also provide

an auto hybridization function which loops over all provided

single-unit clusters. For every cluster, conservative bounds on

the template fitting factor are chosen and the corresponding

unit is moved to another spatial location on the probe that is

randomly chosen. All of this happens automatically, at the cost

of reduced control on the resulting hybrid data. The details on

the automatic bounds selection and template movement can

be found in Appendix A and B, respectively.
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Fig. 4. For every recording chunk (shown in red) that is used for the template estimation, an optimal template scaling factor is determined. The inspect

template fit view allows the user to assess how good of a model the scaled template (shown in blue) is for the current cluster. The organization of the

visualization is identical to Fig. 2. The red profile at the bottom of the plotting area is a visual representation of the ordered scaling factors for all recording

chunks. The fine dashed line (black) indicates the unit fitting factor, i.e., β(n)
s = 1.

F. Importing / exporting templates

To provide increased flexibility it is also possible to import

external spike templates into a recording. This feature allows

for the creation of ground-truth data without the need for a

prior spike sorting. The external templates can be either hand

crafted or exported from other recordings that do have some

prior spike sorting information that allows for the estimation

of spike templates. Details about the importing procedure can

be found in Appendix C.

G. Automatic tools for spike sorting algorithm assessment

Since the main objective of this work is to get a better

insight into spike sorting performance, the tool comes with

methods for comparing the hybrid data spike sorting results to

the hybrid ground-truth spike times. This functionality consists

of two important methods, that will be discussed in more detail

starting from the next paragraph. First, the functionality to

perform automatic cluster merging on the spike sorting results

is discussed. Second, the spike sorting performance metrics

routine is discussed.

1) Automatic cluster merging: Ideally, a spike sorting al-

gorithm outputs a single cluster for each single-unit spike

train present in a recording. In practice however, spikes

from the same neuron are often split over multiple clusters

(referred to as overclustering) or a single cluster contains

spikes from multiple neurons. Experimentalists usually prefer

overclustering, because the manual curation which then consist

of cluster merging is more straightforward than the process of
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Fig. 5. A unit’s spike template can be moved over the probe by using the arrow controls on the left panel. The average spike rate on every channel is

indicated by the color in which the channel is plotted. Moving a template into a silent region will likely result in a hybrid recording that is easier to sort.

The organization of the visualization is identical to Fig. 2.

splitting clusters into several single-unit clusters. Therefore,

modern spike sorting algorithms are typically tuned towards

overclustering.

If an algorithm under investigation is known to have a pref-

erence for overclustering, it is necessary to perform a merging

step prior to calculating the spike sorting performance metrics.

For this purpose an automatic ground truth assisted merging

framework is implemented to bypass this manual merging step

in the assessment of a spike sorting algorithm. Since we do

not provide an automatic splitting framework, algorithms that

are tuned towards overclustering are favoured in terms of final

spike sorting accuracy. We believe this limitation is acceptable,

as it reflects the user preference towards overclustering. The

algorithmic details of the merging framework are given in

Appendix D.

2) Performance metrics calculation: A fast implementa-

tion is provided for the calculation of spike sorting related

performance metrics given the hybrid ground-truth data. The

provided method is capable of generating tables such as Table

I and Table II. Prior to the calculation of the metrics, for

every hybrid spike train an automatic cluster merging step

is performed as explained above. After this merging step, the

following metrics are calculated for every ground-truth spike

train:

• The recall or sensitivity, which is defined as TP
P , with TP

the number of true positives, i.e., the number of spikes

that are correctly associated with the ground-truth spike

train and P the number of positives, i.e., the total number

of spikes in the ground-truth spike train.

• The precision, which is defined as TP
TP+FP , with FP the
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false positives, i.e, spikes that are wrongly associated with

the ground-truth spike train.

• The F1-score is also calculated, which is the harmonic

average of the recall and precision: F1 = 2 precision.recall
precision+recall .

• The number of clusters that were automatically merged,

prior to calculating the above performance metrics.

The implementation is based on Python set structures. A

spike train is modelled as a set containing the spike times

at which the underlying neuron is active. A Python set is

essentially a hash table. A hash table allows to check whether

an element is present in the structure in O(1), i.e., the time

it takes is independent of the number of spike times that are

present in the set. This particular implementation based on

hash tables allows for a very fast calculation of the above

metrics. To cope with spike time misalignment between the

ground truth and the actual spike sorting results, every spike

time in the set structure is extended by a user-defined window.

H. SpikeInterface integration

SpikeInterface [42] is an open-source software stack, that

was designed to promote the interoperability between different

neural recording systems and spike sorting software. This

goal is reached by implementing a unified access model for

both neural recordings and spike sorting. SpikeInterface also

provides functionality for ground truth validation and curation

that can be applied to their unified data access model. In

order to further improve the user experience of SHYBRID,

a SHYBRID-SpikeInterface integration is provided. This inte-

gration has the following advantages:

• Extend the native file format compatibility of SHYBRID

with the file formats that are supported in the SpikeIn-

terface ecosystem. This is both applicable to the neural

recordings, as well as the initial spike sorting format.

• SHYBRID hybrid data can be easily sorted using the var-

ious spike sorters that are supported in the SpikeInterface

ecosystem.

• Besides the SHYBRID validation routine, one can also

analyse the hybrid data spike sorting results and perform

a ground truth validation using SpikeInterface.

IV. CASE STUDY: COMPARING SPIKE SORTING

ALGORITHMS AND TUNING PARAMETERS

In this section the performance of two spike sorting algo-

rithms on a specific recording is analysed. The two spike sort-

ing algorithms considered here are SpyKING CIRCUS (SC)

[18] and KiloSort (KS) [15]. The donor recording used here

is part of a paired recordings dataset (2015 09 03 Cell.9.0)

[24], which is commonly used for validating spike sorting

algorithms [17] [18] [19].

The donor recording is given to both spike sorting algo-

rithms prior to the hybridization process. We generate two

hybrid data sets from this donor recording, where one is

informed by the SC spike sorting (with default parameter

settings) results and the other by the KS spike sorting (with

default parameter settings, where number of clusters = 256)

results. This will allow us later on to identify a potential bias

towards the algorithm from which the spike sorting results

are used during the hybridization process. The spike sorting

results from both algorithms are manually curated using the

phy template GUI [41]. This curation process consists of

a manual cluster merging and assessing whether or not the

cluster consist of single-unit activity. Two hybrid data sets

are then generated, following the steps described in Section

III, from the single-unit spike sorting results obtained during

the manual curation of both algorithms. The total number of

injected hybrid ground-truth units is 27 for the SC-informed

hybrid data and 15 for the KS-informed hybrid data. There

are no overlapping spike trains between the SC-informed and

KS-informed data. Fig. 6 shows the spike templates of four

hybrid units. This figure contains templates from both SC-

informed and KS-informed hybrid data. Visual comparison

shows that units that are easily recovered (see next paragraph

for the definition) during the final spike sorting, are likely to

have a higher SNR compared to units that were not recovered

during this spike sorting.

After hybridization, both hybrid data sets are again sorted

using both algorithms (again with default parameter settings).
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Fig. 6. Example templates (blue) of hybrid units for both the SC-informed and KS-informed hybrid data are shown. The two templates in the top row

originate from hybrid units that are recovered (i.e., F1-score > 0.9) by both spike sorting algorithms (see TABLE I and II for numerical details). The bottom

row contains two templates from hybrid units that were only partially recovered by both algorithms. An example optimally scaled spike signal chunk (red)

is shown behind each template to allow for a visual assessment of the relative noise levels with respect to the template power. The individual unit template

plots are generated through the SHYBRID export plot functionality.

Because this time the spike sorting is performed on ground-

truth data, a ground truth assisted automatic merging can be

performed after the spike sorting, as explained in Section

III-G1. These automatically merged spike sorting results are

then compared to the ground-truth labels. The automatic

merging and ground truth comparison result in Table I and II.

The rows in those tables that have a bold typesetting indicate

ground-truth units that have been properly recovered, i.e., the

F1-score for those units is greater than 0.9. Although this

definition is somewhat arbitrary, it allows us to focus on the

spike sorting performance metrics for units that have been

successfully recovered.

The spike sorting performance metrics for the recovered

units are also summarized in Fig. 7. Fig. 7A shows that for

the SC-informed hybrid data SC recovers 18/27 units (dark

blue bar) and KS recovers 10/27 units (red bar). One can also

see that for the KS-informed hybrid data SC recovers 7/15

units and KS recovers 5/15 units. For both the SC and KS-
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Fig. 7. A: For both the SC- and KS-informed hybrid ground-truth data, the number of hybrid single-unit spike trains that are recovered by the different spike

sorting algorithms is shown. The total number of hybrid ground-truth spike trains, i.e, the maximum number that could have been recovered, is shown in

grey. B: For both the SC-and KS-informed hybrid ground-truth data, the average number of cluster merges over the single-unit spike trains is shown for the

different spike sorting algorithms that are used. The error bars indicate the standard deviation. C and D: Spike sorting performance metrics for the SC- and

KS-informed hybrid data, respectively. As performance metrics the F1-score, precision and recall are shown. The error bars indicate the standard deviation

across the recovered single-unit spike trains.
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informed hybrid data, the average number of automatic cluster

merges is higher for SC than for KS (see Fig. 7B), and the

average F1-score is higher for KS (red bar) than for SC (dark

blue bar) as can be seen from Fig. 7C and 7D.

SC recovers 66.7% of the hybrid units for the SC-informed

data and 46.7% of hybrid units for the KS-informed data.

The average F1-score for SC on the SC-informed data equals

97.0%, and 95.3% on the KS-informed data. This information

might indicate the existence of a bias towards the initial spike

sorter, when SC is used for that purpose. On the other hand, KS

recovers 37.0% of the hybrid units for the SC-informed data

and 33.3% for the KS-informed data. The average F1-score for

KS on the SC-informed data equals 98.0%, and 97.2% on the

KS-informed data. From this information we cannot conclude

the existence of a bias towards the initial spike sorter, when

KS is used for this purpose. Apart from the potential existence

of a bias, the above results might also be partially explained by

differences in spike sorting difficulty between the two different

hybrid data sets.

From these first observations we can conclude that SC

returns more single-unit clusters compared to KS for this

specific data. However, the spike sorting accuracy is higher

for the single-unit clusters retrieved by KS. The average KS

unit also consists of fewer merged sub-clusters, indicating that

less effort has to be spend on the manual curation. Based

on these identified differences, we can differentiate between

the two algorithms for this specific recording setting and

choice of spike sorting parameters depending on the intended

further use of the spike sorting results. In case these spike

sorting results are further used for the estimation of neural

population dynamics, we argue that having a higher number

of single units at a slightly reduced spike sorting performance

is favourable (motivated by [43]), as such favouring SC for

this application. However, when these spike sorting results

are used for investigating the exact role of a single neuron,

e.g., investigating its spatial tuning [6], the quality of the

sorting is more important than the quantity of retrieved single

units. As such, favouring KS over SC in this context. More

generally speaking, depending on which sorting characteristics

are favourable for a specific application, an informed choice

can be made between spike sorting algorithms by using hybrid

data.

A key difference between both spike sorting algorithms

compared here, is that KS requires the user to define the

number of clusters prior to the actual spike sorting. The KS

spike sorting results discussed above, used a value of 256

for the number of clusters. To try to increase the number

of recovered single-unit spike trains for KS, the number of

clusters is chosen as 512 , while keeping the default setting

for all other parameters. The results of this second KS run are

represented in Fig. 7 by the yellow bars.

As can be seen from Fig. 7A, there is no direct evidence that

KS with more clusters recovers more single-unit spike trains.

Only two additional single-unit spike trains are recovered

under the new number of clusters setting for the SC-informed

data. However, the F1-score for the recovered single-unit spike

trains does increase even further, as compared to the previous

spike sorting runs, as can be seen from Fig. 7C and 7D. As

can be seen from this example, it is non-trivial to predict the

effect of changing spike sorting related parameters on the spike

sorting performance.

V. DISCUSSION AND CONCLUSION

In this work we first formally introduced the hybrid ground-

truth model. We presented a graphical tool to aid the creation

of such hybrid ground-truth data. This graphical spike hy-

bridizer for extracellular recordings or SHYBRID makes the

creation of hybrid data very accessible to experimenters and

tries to improve a user’s spike sorting experience. Because of

the visual approach, a user can easily verify the key hybrid

model assumptions and monitor the quality of the resulting

hybrid recordings. Besides the data generation aspect, func-

tionality is provided for automatic cluster merging and very

time-efficient spike sorting performance metric calculation

through hash functions.

A case study was conducted where the performance of two

different spike sorting algorithms on a hybridized recording

was investigated. From the spike sorting results obtained on



16

the hybrid ground truth, clear differences in spike sorting

characteristics between the two algorithms could be identified

for this data. Such objectively identified differences can help

a user to make an informed decision about which algorithm

to use for a certain application, depending on the targeted

algorithmic performance characteristics. During the case study

the effect of changing spike sorting related parameters was

investigated. It was demonstrated that the effect of adapting a

parameter that controls the total number of spike clusters does

not necessarily have the anticipated effect of recovering more

single-unit spike trains. Hybrid ground-truth data allows for an

objective quantification of the effect of specific parameter set-

tings. By studying the effect of different parameter settings, a

deeper understanding of spike sorting algorithms is promoted.

The use of hybrid ground-truth data should lead to a higher

spike sorting performance and less time spent on manual

curation when applied to similar future data. This is especially

interesting for chronic recordings, where the measurement

equipment is kept in the same brain region over multiple weeks

to months. In such experiments a multitude of recordings is

available from the same region. Especially for such chronic

experiments, the initial hybridization effort might be worth

the investment. It is needless to say that this tool is also

valuable for the community of spike sorting developers. By

sharing generated hybrid data within the community, a large

body of extracellular ground-truth data can be obtained for

future benchmarks.

Almost simultaneously with the release of SHYBRID, the

MEArec [31] testbench simulator for ground-truth extracellu-

lar spiking data was released. The development of this tool

is illustrative for the need of spiking ground-truth data for

validating and better understanding spike sorting algorithms.

MEArec generates its ground-truth data from computational

simulations, using complex biophysically detailed models.

Such a modelling approach enables full control over complex

phenomena such as, e.g., bursting activity, drift or spatio-

temporal synchrony. However, this high level of control im-

plies that users have to acquire expert technical know-how

in order to generate meaningful data, in particular when the

aim is to generate ground-truth data that is representative

for a specific experiment and/or recording set-up. Therefore,

MEArec seems mostly suited for, e.g., spike sorting developers

or modelling experts rather than spike sorting users.

SHYBRID does not require such a deep level of technical

modelling expertise to generate meaningful ground-truth data.

Furthermore, the ground-truth data is fully generated from

an actual recording, which makes it intrinsically tailored to

the recording setting of the user. The ease of use of SHY-

BRID comes at the expense of reduced control over certain

recording-related characteristics, as compared to MEArec.

Bursting cells can be included in the hybrid ground truth data,

if they are present in the prior spike sorting results. Note that

such SHYBRID bursting cells are only a simple amplitude

modulation model of bursting, and do not account for template

shape modulation that might occur for true bursting cells.

Spatio-temporal overlap arises naturally when relocating units

during the hybridization process, but synchrony can not be

enforced. Drift simulation is not supported in SHYBRID for

the time being, because it does not arise naturally from the

presented hybrid model. A drift simulation framework could,

technically speaking, be added to our software in a future

update, but this will come at the cost of increased complexity

for the user. SHYBRID and MEArec are complementary tools

designed with the same end goal, i.e., improving spike sorting

results, but both targeted at a different primary audience.

INFORMATION SHARING STATEMENT

The presented graphical user interface and spike sorting

analysis code are available under an open-source license from

https://github.com/jwouters91/shybrid. The software is also

available as a Python package from https://pypi.org/project/

shybrid/. The extracellular traces (2015 09 03 Cell.9.0) that

were hybridized and analysed in this work were collected

by [24] and are available from their website http://www.

kampff-lab.org/validating-electrodes.

https://github.com/jwouters91/shybrid
https://pypi.org/project/shybrid/
https://pypi.org/project/shybrid/
http://www.kampff-lab.org/validating-electrodes
http://www.kampff-lab.org/validating-electrodes


17

ACKNOWLEDGMENT

The authors would like to thank Jonathan Dan and Jonathan

Moeyersons for their time spent on thoroughly testing the

software and for their valuable feedback.

APPENDIX

A. Auto hybridization fitting factor bounds

The calculation of the fitting factor bounds during the

automatic hybridization is based on robust statistics, which

are commonly used for the detection and removal of outliers.

The automatic bounds selection is rather conservative, i.e., it

is likely that quite a few good spikes are excluded from the

hybridization when using the automated approach.

Consider B(n) =
{

log10 β
(n)
s | s ∈ S(n)

}
which is the set

of the logarithm of the fitting factors (see Section II) for a

certain neuron n. The logarithm is used to be able to also

remove close to zero fitting factors based on simple statistics.

Given B(n), the first and third quartile are calculated, denoted

by Q1 and Q3 respectively. From those quartile values the

interquartile range (IQR) is calculated as IQR = Q3 − Q1.

From those statistics the bounds are calculated:

l(n)α = 10Q1− 3
4 IQR, (7)

and

u(n)α = 10Q3+
3
4 IQR, (8)

where the IQR scaling factor (i.e. 3
4 ) was determined experi-

mentally.

B. Auto hybridization random unit relocation

During the automatic hybridization, a random unit reloca-

tion is calculated for every neuron. For this relocation, only

a shift in the y-direction is considered. The random shift is

determined by drawing a y-position on the probe grid model

(see Section II) from a discrete uniform distribution. This

random y-position is the y-position to which the channel with

the maximal deflection in the spike template is shifted to. In

this way we avoid that the complete template is shifted off the

probe. The actual shift can then be calculated as the random

y-position minus the y-position of the channel with maximal

deflection in the original template. A minimum shift of two

channels is enforced, to make sure that the re-inserted unit is

sufficiently separable from the original unit.

C. External template import

When an external template is imported, there are no spike

times available, neither is the scaling known. The spike occur-

rences are modeled as a poisson point process. The inter-spike

interval ∆ISI is then modelled by drawing from an exponential

distribution:

p(∆ISI, λ) = λ exp (−λ∆ISI) , (9)

where λ represents the desired spike rate. Every inter-spike

interval sample ∆̂ISI is enforced to last at minimum the user-

defined refractory period ∆min:

∆̂ISI ← max
(

∆̂ISI,∆min

)
. (10)

The actual simulated discrete spike times ksim are obtained

by calculating the cumulative sum over the inter-spike interval

samples. Those spike times are then discretized by multiplying

them with the recording sampling frequency and rounding

each product to its nearest integer. This gives rise to a set

of discrete spike times Sext = {ksim}.

The template scaling is derived from the user-defined de-

sired peak-signal-to-noise ratio (PSNR = 10 log10
Ppeak

Pnoise
). The

scaling factor is calculated as follows:

βext =

√
Pnoise10

PSNR
10

Ppeak
, (11)

with Ppeak equal to the square of the peak absolute value over

all channels of the external template and Pnoise equal to a

robust estimate (based on the median absolute deviation) of the

noise variance of the channel on which the template reaches

its peak absolute value.

The hybrid data generated from an external template can

then be described as follows:
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hext
c [k] = xc [k] +∑

s∈Sext

K∑
m=−K

δ [k − (s+m)]βexttext
c,(x,y) [m] ,

(12)

where text
c,(x,y) denotes the imported external template at chan-

nel c. Note that the template temporal window is derived

from the external template directly. The external template is

assumed to match the sampling frequency of the recording

data that is being hybridized.

D. Automatic merging

The merging framework for a specific ground-truth spike

train consists of the following steps:

1) Compute the correspondence between the ground-truth

spike train and all automatically recovered spike clusters

in terms of precision and recall. More information on

those performance metrics can be found in Section

III-G2.

2) Sort all clusters on descending precision, such that the

cluster with the highest fraction of true spike times is

on top of the list.

3) Merge the ordered clusters together in a top-down

fashion, i.e. starting from the cluster with the highest

precision, as long as the merge operation increases the

F1-score of the new cluster that contains all previously

merged clusters.

Initially, the merging of clusters with a high precision will

increase the sensitivity, at only a very small drop in precision.

Such a merging will likely lead to an increase in F1-score. At a

certain point, clusters will start containing significant amounts

of false positives that will notably decrease the precision of the

merged cluster. This decrease will then result in a decreasing

F1-score. The proposed approach tries to find the combination

of clusters with maximal F1-score, without explicitly having to

consider all possible combinations, preventing a combinatorial

explosion from happening.
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decoding the brain,” IEEE Signal processing magazine, vol. 29, no. 1,

pp. 124–143, 2012.

[5] S. Grün and S. Rotter, Analysis of parallel spike trains. Springer, 2010,

vol. 7.

[6] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and

the brain’s spatial representation system,” Annu. Rev. Neurosci., vol. 31,

pp. 69–89, 2008.

[7] A. Khatoun, B. Asamoah, and M. Mc Laughlin, “Simultaneously excita-

tory and inhibitory effects of transcranial alternating current stimulation

revealed using selective pulse-train stimulation in the rat motor cortex,”

Journal of Neuroscience, vol. 37, no. 39, pp. 9389–9402, 2017.
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