Skip to main content

Advertisement

Log in

CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing’s disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Objective

In MRI-negative cases Cushing’s disease (CD), surgeons perform a more extensive exploration of the pituitary gland, with fewer instances of hormonal remission. 18F-fluoro-deoxy-glucose (18F-FDG) positron emission tomography (PET) has a limited role in detecting adenomas that cause CD (corticotropinomas). Our previous work demonstrated corticotropin-releasing hormone (CRH) stimulation leads to delayed, selective glucose uptake in corticotropinomas. Here, we prospectively evaluated the utility of CRH stimulation in improving 18F-FDG-PET detection of adenomas in CD.

Methods

Subjects with a likely diagnosis of CD (n = 27, 20 females) each underwent two 18F-FDG-PET studies [without and with ovine-CRH (oCRH) stimulation] on a high-resolution PET platform. Standardized-uptake-values (SUV) in the sella were calculated. Two blinded neuroradiologists independently read 18F-FDG-PET images qualitatively. Adenomas were histopathologically confirmed, analyzed for mutations in the USP8 gene and for glycolytic pathway proteins.

Results

The mean-SUV of adenomas was significantly increased from baseline (3.6 ± 1.5) with oCRH administration (3.9 ± 1.7; one-tailed p = 0.003). Neuroradiologists agreed that adenomas were visible on 21 scans, not visible on 26 scans (disagreed about 7, kappa = 0.7). oCRH-stimulation led to the detection of additional adenomas (n = 6) not visible on baseline-PET study. Of the MRI-negative adenomas (n = 5), two were detected on PET imaging (one only after oCRH-stimulation). USP8 mutations or glycolytic pathway proteins were not associated with SUV in corticotropinomas.

Conclusions

The results of the current study suggest that oCRH-stimulation may lead to increased 18F-FDG uptake, and increased rate of detection of corticotropinomas in CD. These results also suggest that some MRI invisible adenomas may be detectable by oCRH-stimulated FDG-PET imaging.

Clinical trial information

18F-FDG-PET imaging with and without CRH stimulation was performed under the clinical trial NIH ID 12-N-0007 (clinicaltrials.gov identifier NCT01459237). The transsphenoidal surgeries and post-operative care was performed under the clinical trial NIH ID 03-N-0164 (clinicaltrials.gov identifier NCT00060541).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Bochicchio, M. Losa, M. Buchfelder, Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J. Clin. Endocrinol. Metab. 80, 3114–3120 (1995)

    CAS  PubMed  Google Scholar 

  2. T. Moshang, Editorial: Cushing’s disease, 70 years later… and the beat goes on. J. Clin. Endocrinol. Metab. 88, 31–33 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. P. Chittiboina, B.K. Montgomery, C. Millo, P. Herscovitch, R.R. Lonser, High-resolution 18 F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease. J. Neurosurg. 122, 1–7 (2014)

    Google Scholar 

  4. I.N. Chowdhury, N. Sinaii, E.H. Oldfield, N. Patronas, L.K. Nieman, A change in pituitary magnetic resonance imaging protocol detects ACTH-secreting tumours in patients with previously negative results. Clin. Endocrinol. 72, 502–506 (2010)

    Article  Google Scholar 

  5. D.A. Finelli, B. Kaufman, Varied microcirculation of pituitary adenomas at rapid, dynamic, contrast-enhanced MR imaging. Radiology 189, 205–210 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. R. Kasaliwal, S.S. Sankhe, A.R. Lila, S.R. Budyal, V.S. Jagtap, V. Sarathi et al. Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas. Clin. Endocrinol. 78, 825–830 (2013)

    Article  CAS  Google Scholar 

  7. R.R. Lonser, J.J. Wind, L.K. Nieman, R.J. Weil, H.L. DeVroom, E.H. Oldfield, Outcome of surgical treatment of 200 children with Cushing’s disease. J. Clin. Endocrinol. Metab. 98, 892–901 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W.W. de Herder, P. Uitterlinden, H. Pieterman, H.L. Tanghe, D.J. Kwekkeboom, H.A. Pols et al. Pituitary tumour localization in patients with Cushing’s disease by magnetic resonance imaging. Is there a place for petrosal sinus sampling? Clin. Endocrinol. 40, 87–92 (1994)

    Article  Google Scholar 

  9. E.H. Oldfield, J.L. Doppman, L.K. Nieman, G.P. Chrousos, D.L. Miller, D.A. Katz et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N. Engl. J. Med. 325, 897–905 (1991)

    Article  CAS  PubMed  Google Scholar 

  10. J.J. Wind, R.R. Lonser, L.K. Nieman, H.L. DeVroom, R. Chang, E.H. Oldfield, The lateralization accuracy of inferior petrosal sinus sampling in 501 patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 98, 2285–93 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Jagannathan, R. Smith, H.L. DeVroom, A.O. Vortmeyer, C.A.Stratakis, L.K. Nieman, et al. Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J. Neurosurg. 111, 531–9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. E.H. Oldfield, Surgical management of Cushing’s disease: a personal perspective. Clin. Neurosurg. 58, 13–26 (2011)

    Article  PubMed  Google Scholar 

  13. E.H. Oldfield, A.O. Vortmeyer, Development of a histological pseudocapsule and its use as a surgical capsule in the excision of pituitary tumors. J. Neurosurg. 104, 7–19 (2006)

    Article  PubMed  Google Scholar 

  14. M. Bergström, C. Muhr, K. Ericson, H. Lundqvist, A. Lilja, L. Eriksson et al. The normal pituitary examined with positron emission tomography and (methyl-11C)-L-methionine and (methyl-11C)-D-methionine. Neuroradiology 29, 221–225 (1987)

    Article  PubMed  Google Scholar 

  15. B. De Souza, A. Brunetti, M.J. Fulham, R.A. Brooks, D. DeMichele, P. Cook et al. Pituitary microadenomas: a PET study. Radiology 177, 39–44 (1990)

    Article  PubMed  Google Scholar 

  16. S.H. Hyun, J.Y. Choi, K.-H. Lee, Y.S. Choe, B.-T. Kim, Incidental focal 18F-FDG uptake in the pituitary gland: clinical significance and differential diagnostic criteria. J. Nucl. Med. 52, 547–50 (2011)

    Article  PubMed  Google Scholar 

  17. S.Y. Jeong, S.-W. Lee, H.J. Lee, S. Kang, J.-H. Seo, K.A. Chun et al. Incidental pituitary uptake on whole-body 18F-FDG PET/CT: a multicentre study. Eur. J. Nucl. Med. Mol. Imaging 37, 2334–43 (2010)

    Article  PubMed  Google Scholar 

  18. H. Ju, J. Zhou, Y. Pan, J. Lv, Y. Zhang, Evaluation of pituitary uptake incidentally identified on 18F-FDG PET/CT scan. Oncotarget 8, 55544–55549 (2017)

    PubMed  PubMed Central  Google Scholar 

  19. C.W. Koo, P. Bhargava, V. Rajagopalan, M. Ghesani, H. Sims-Childs, N.J. Kagetsu, Incidental detection of clinically occult pituitary adenoma on whole-body FDG PET imaging. Clin. Nucl. Med. 31, 42–3 (2006)

    Article  PubMed  Google Scholar 

  20. A.S. Alzahrani, R. Farhat, A. Al-Arifi, N. Al-Kahtani, I. Kanaan, M. Abouzied, The diagnostic value of fused positron emission tomography/computed tomography in the localization of adrenocorticotropin-secreting pituitary adenoma in Cushing’s disease. Pituitary 12, 309–14 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. J. Lu, B.K. Montgomery, G.P. Chatain, A. Bugarini, Q. Zhang, X. Wang et al. Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1. Mol. Cell Endocrinol. 470, 1–10 (2017)

    Google Scholar 

  22. L.K. Nieman, B.M.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 93, 1526–40 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Patronas, N. Bulakbasi, C.A.A. Stratakis, A. Lafferty, E.H.H. Oldfield, J. Doppman et al. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 88, 1565–1569 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. R.E. Carson, W.C. Barker, J.-S.L.J.-S. Liow, C.A. Johnson, Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. 2003 IEEE NSS/MIC Conf. Rec. 5:3281–3285 (2003)

  25. DHSS/MRC Group on Obesity Research., James WPT (William PT, Waterlow JC (John C: Research on Obesity: A Report of the DHSS/MRC Group. H.M.S.O, 1976

  26. M. Jenkinson, S. Smith, A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–56 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. B. Bai, J. Bading, P.S. Conti, Tumor quantification in clinical positron emission tomography. Theranostics 3, 787–801 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  28. G.P. Chatain, N. Patronas, J.G. Smirniotopoulos, M. Piazza, S. Benzo, A. Ray-Chaudhury, et al. Potential utility of FLAIR in MRI-negative Cushing’s disease. J. Neurosurg. 129, 1–9 (2017)

  29. D.G. Altman, Practical Statistics for Medical Research. London: Chapman and Hall (1991)

  30. F. Maher, S.J. Vannucci, I.A. Simpson, Glucose transporter proteins in brain. FASEB J. 8, 1003–1011 (1994)

    Article  CAS  PubMed  Google Scholar 

  31. J.R. Viña, R.B. Page, D.W. Davis, R.A. Hawkins, Aerobic glycolysis by the pituitary gland in vivo. J. Neurochem. 42, 1479–82 (1984)

    Article  PubMed  Google Scholar 

  32. M.G.Vander Heiden, L.C. Cantley, C.B. Thompson, P. Mammalian, C. Exhibit, Metabolism A: understanding the Warburg Effect: cell proliferation. Science 324, 1029–1034 (2009)

    Article  CAS  Google Scholar 

  33. O. Warburg, Injuring of respiration the origin of cancer cells. Science 123, 309–14 (1956)

    Article  CAS  PubMed  Google Scholar 

  34. S. Filetti, G. Damante, D. Foti, Thyrotropin stimulates glucose transport in cultured rat thyroid cells. Endocrinology 120, 2576–81 (1987)

    Article  CAS  PubMed  Google Scholar 

  35. V.M. Harris, S.V. Bendre, F. Gonzalez De Los Santos, A. Fite, A. El-Yaman El-Dandachli, L. Kurenbekova et al. GnRH increases glucose transporter-1 expression and stimulates glucose uptake in the gonadotroph. J. Endocrinol. 212, 139–147 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. T.L. Francavilla, R.S. Miletich, D. DeMichele, N.J. Patronas, E.H. Oldfield, B.D. Weintraub et al. Positron emission tomography of pituitary macroadenomas: hormone production and effects of therapies. Neurosurgery 28, 826–833 (1991)

    Article  CAS  PubMed  Google Scholar 

  37. H.P. Patt, V. Lele, A. Lila, T. Bandgar, N. Shah, Utility of hCRH-stimulated (18) F-FDG PET-CT scan in localisation of pituitary microadenoma in Cushing’s disease. J. Med. Imaging Radiat. Oncol. 58, 213 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Z.-Y. Ma, Z.-J. Song, J.-H. Chen, Y.-F. Wang, S.-Q. Li, L.-F. Zhou et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 25, 306–317 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Reincke, S. Sbiera, A. Hayakawa, M. Theodoropoulou, A. Osswald, F. Beuschlein et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 47, 31–38 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. H.Wa.M. de Jong, F.H.P. van Velden, R.W. Kloet, F.L. Buijs, R. Boellaard, A. Lammertsma, a: Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys. Med. Biol. 52, 1505–26 (2007)

    Article  PubMed  Google Scholar 

  41. F.H.P. van Velden, R.W. Kloet, B.N.M. van Berckel, F.L. Buijs, G. Luurtsema, A. Lammertsma, et al. HRRT versus HR+ human brain PET studies: an interscanner test-retest study. J. Nucl. Med. 50, 693–702 (2009)

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health Intramural Grant ZIA NS003150-01 awarded to Prashant Chittiboina. This work was also supported by the Intramural Research Programs of the National Institute of Neurological Diseases and Stroke, National Institutes of Health Clinical Center, the National Institute of Diabetes and Digestive and Kidney Disorders, and Eunice Kennedy Shriver National Institute for Child Health and Human Development, Bethesda, MD. J.B. was supported by the NIH Medical Research Scholars Program, a public–private partnership supported jointly by the NIH and generous contributions to the Foundation for the NIH. For a complete list of donors, please visit http://fnih.org/work/ education-training-0/medical-research-scholars-program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Chittiboina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Combined Neuroscience Institutional Review Board of the NIH and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, J., Patronas, N.J., Smirniotopoulos, J. et al. CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing’s disease. Endocrine 65, 155–165 (2019). https://doi.org/10.1007/s12020-019-01944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01944-7

Keywords

Navigation