Skip to main content

Advertisement

Log in

Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The pathogenesis of bone fragility is of utmost importance especially to modern societies with aging populations. Increased skeletal fragility due to aging and disease motivates researchers to investigate the contributing biological mechanisms and to find ways to inhibit them. Bone quality is a set of structural and compositional variables that contribute to bone strength and influence its ability to resist fracture. They originate from multiple bone hierarchical levels and include the morphology (mass distribution), the chemical composition, and the biomechanical properties of bone tissue such as stiffness, fatigue strength, and fracture toughness. Qualitative and quantitative measurements of bone material properties reflect the underlying health or disease status. Fourier transform infrared (FTIR) spectroscopy and imaging are able to evaluate spatially inhomogeneous structures like bone in the form of sections or homogenized powder, providing simultaneous quantitative and qualitative information from both organic and inorganic tissue components. These techniques give a snapshot of structural and material properties that essentially depend on bone turnover while they are also sensitive to tissue alterations due to metabolic and nonmetabolic diseases, and external factors like administration of drugs. In this review, we discuss the application of FTIR spectroscopy and imaging to preclinical and clinical studies. The interpretation of results emphasizes the potential of infrared spectroscopic techniques to associate bone heterogeneity with fracture risk, assess the compositional and structural properties of osteoporotic bone, and investigate bisphosphonates’ antiresorptive action and side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rabar S, Lau R, O’Flynn N, Li L, Barry P. Risk assessment of fragility fractures: summary of NICE guidance. BMJ. 2012;345(aug08 1):e3698.

    Article  PubMed  Google Scholar 

  2. Mccreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res. 2000;15(12):2305–8.

    Article  CAS  PubMed  Google Scholar 

  3. Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging findings and evaluation of metabolic bone disease. Adv Radiol. 2015;2015:812794.

    Article  Google Scholar 

  4. Talari AC, Martinez MA, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52(5):456–506.

    Article  CAS  Google Scholar 

  5. Old OJ, Fullwood LM, Scott R, Lloyd GR, Almond LM, Shepherd NA, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6(12):3901–17.

    Article  CAS  Google Scholar 

  6. Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–32.

    Article  CAS  PubMed  Google Scholar 

  8. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  9. Sabet FA, Najafi AR, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 2011;7(9):3446–51.

    Article  PubMed  Google Scholar 

  11. van der Harst MR, Brama PA, van de Lest CH, Kiers GH, DeGroot J, van Weeren PR. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr Cartil. 2004;12(9):752–61.

    Article  Google Scholar 

  12. Kourkoumelis N. Osteoporosis and strontium-substituted hydroxyapatites. Ann Transl Med. 2016;4:1.

    Article  CAS  Google Scholar 

  13. Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8(11):3876–87.

    Article  CAS  PubMed  Google Scholar 

  14. Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci. 2010;107(52):22425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, et al. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999;64(5):437–49.

    Article  CAS  PubMed  Google Scholar 

  16. Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, et al. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol. 2012;47(2):154–9.

    Article  PubMed  Google Scholar 

  17. Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res. 2007;22(7):1037–45.

    Article  PubMed  Google Scholar 

  18. Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.

    Article  CAS  PubMed  Google Scholar 

  19. Yamauchi M. Collagen: the major matrix molecule in mineralized tissues. In: Anderson JJB, Garner SC, editors. Calcium and phosphorus in health and disease. NY: CRC Press; 1996.

    Google Scholar 

  20. Chappard D, Baslé MF, Legrand E, Audran M. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22(8):2225–40.

    Article  CAS  PubMed  Google Scholar 

  21. Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189(1–4):20–4.

    Article  CAS  PubMed  Google Scholar 

  22. Boskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res. 1996;35(1–4):357–63.

    Article  CAS  PubMed  Google Scholar 

  23. Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(3):35–42.

    Article  CAS  Google Scholar 

  24. Kourkoumelis N, Tzaphlidou M. Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. Sci World J. 2010;10:402–12.

    Article  Google Scholar 

  25. Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Small RE. Uses and limitations of bone mineral density measurements in the management of osteoporosis. Medscape Gen Med. 2005;7(2):3.

    Google Scholar 

  27. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4(6):368–81.

    Article  CAS  PubMed  Google Scholar 

  28. Schuit SC, Van der Klift M, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.

    Article  CAS  PubMed  Google Scholar 

  29. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.

    Article  Google Scholar 

  30. Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53.

    Article  PubMed  Google Scholar 

  31. Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11.

    Article  PubMed  Google Scholar 

  32. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  33. Kourkoumelis N. Spectroscopy for biosciences. Contemp Phys. 2015;56(4):480–2.

    Article  Google Scholar 

  34. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenergetics. 2007;1767(9):1073–101.

    Article  CAS  Google Scholar 

  35. Steiner G, Koch E. Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem. 2009;394(3):671–8.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870.

    Article  CAS  PubMed  Google Scholar 

  37. Lopes CD, Limirio PH, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747–69.

  38. Kazarian SG, Chan KA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138(7):1940–51.

    Article  CAS  PubMed  Google Scholar 

  39. Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated approaches for quantification of bone mineral crystallinity using transmission Fourier transform infrared (FT-IR), attenuated Total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc. 2018;72(11):1581–93.

  40. Ellingham ST, Thompson TJ, Islam M. The effect of soft tissue on temperature estimation from burnt bone using Fourier transform infrared spectroscopy. J Forensic Sci. 2016;61(1):153–9.

    Article  PubMed  Google Scholar 

  41. Gu C, Katti DR, Katti KS. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone. Spectrochim Acta A Mol Biomol Spectrosc. 2013;103:25–37.

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Zhai M, Zhao Y, Yin J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann Joint. 2018;3:9.

  43. Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–79.

    Article  CAS  Google Scholar 

  44. Petra M, Anastassopoulou J, Theologis T, Theophanides T. Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Mol Struct. 2005;733(1–3):101–10.

    Article  CAS  Google Scholar 

  45. Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  46. Combes C, Cazalbou S, Rey C. Apatite biominerals. Fortschr Mineral. 2016;6(2):34.

    Article  CAS  Google Scholar 

  47. Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int. 1990;46(6):384–94.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson RM, Elliott JC, Dowker SE, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004;25(11):2205–13.

    Article  CAS  PubMed  Google Scholar 

  49. Ivanova TI, Frank-Kamenetskaya OV, Kol'tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160(2):340–9.

    Article  CAS  Google Scholar 

  50. Byrne HJ, Knief P, Keating ME, Bonnier F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev. 2016;45(7):1865–78.

    Article  CAS  PubMed  Google Scholar 

  51. Rinnan Å. Pre-processing in vibrational spectroscopy—when, why and how. Anal Methods. 2014;6(18):7124–9.

    Article  Google Scholar 

  52. Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.

    Article  CAS  Google Scholar 

  53. Kourkoumelis N, Tzaphlidou M. Multivariate statistical evaluation of bone site and sex as parameters for the Fourier transform infrared spectroscopic study of normal bone. Spectroscopy. 2010;24(1–2):99–104.

    Article  CAS  Google Scholar 

  54. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petibois C, Desbat B. Clinical application of FTIR imaging: new reasons for hope. Trends Biotechnol. 2010;28(10):495–500.

    Article  CAS  PubMed  Google Scholar 

  56. Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91.

    Article  CAS  PubMed  Google Scholar 

  57. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int. 1996;59(6):480–7.

    Article  CAS  PubMed  Google Scholar 

  58. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410(1):93–106.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boskey A, Camacho NP. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.

    Article  CAS  PubMed  Google Scholar 

  60. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3− vibration. Biochim Biophys Acta (BBA) Gen Subj. 2001;1527(1–2):11–9.

    Article  CAS  Google Scholar 

  61. Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, et al. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res. 2010;25(6):1360–6.

    Article  PubMed  Google Scholar 

  62. Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009a;24(7):1271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, et al. Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res. 2003;44(3–4):134–42.

    Article  CAS  PubMed  Google Scholar 

  64. Bala Y, Farlay D, Chapurlat R, Boivin G. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol. 2011;165:647–55.

  65. Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int. 2010;87(5):450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dal Sasso G, Asscher Y, Angelini I, Nodari L, Artioli G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Sci Rep. 2018;8(1):12025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kourkoumelis N, Lani A, Tzaphlidou M. Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. J Biol Phys. 2012;38(4):623–35.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.

    Article  CAS  PubMed  Google Scholar 

  70. Yamauchi M, Young DR, Chandler GS, Mechanic GL. Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone. 1988;9(6):415–8.

    Article  CAS  PubMed  Google Scholar 

  71. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–22.

    Article  CAS  PubMed  Google Scholar 

  73. Robins SP, Duncan A, Wilson N, Evans BJ. Standardization of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation. Clin Chem. 1996;42(10):1621–6.

    CAS  PubMed  Google Scholar 

  74. Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int. 2015;96(1):18–29.

    Article  CAS  PubMed  Google Scholar 

  75. Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, et al. The ratio 1660/1690 cm−1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One. 2011;6(12):e28736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goodacre R, Sergo V, Barr H, Sammon C, Schultz ZD, Baker MJ, et al. Clinical Spectroscopy: general discussion. Faraday Discuss. 2016;187:429–60.

    Article  CAS  PubMed  Google Scholar 

  77. Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10(7):e1001482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.

    Article  CAS  PubMed  Google Scholar 

  79. Bonjour JP, Ammann P, Rizzoli R. Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporos Int. 1999;9(5):379–93.

    Article  CAS  PubMed  Google Scholar 

  80. Hui SL, Slemenda CW, Johnston CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71.

  82. Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. 2008;30(10):1209–26.

    Article  CAS  PubMed  Google Scholar 

  83. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci. 2011;108(35):14416–21.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Currey J. Structural heterogeneity in bone: good or bad? J Musculoskelet Nueronal Interact. 2005;5(4):317.

    CAS  Google Scholar 

  86. Makowski AJ, Granke M, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Bone tissue heterogeneity is associated with fracture toughness: a polarization Raman spectroscopy study. In SPIE BiOS. International Society for Optics and Photonics. SPIE Proc. 2015;9303:341.

  87. Besdo S, Vashishth D. Extended finite element models of introcortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 2012;64:301–5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59(1):64–74.

    Article  Google Scholar 

  89. Hadjipanteli A, Kourkoumelis N, Fromme P, Olivo A, Huang J, Speller R. A new technique for the assessment of the 3D spatial distribution of the calcium/phosphorus ratio in bone apatite. Physiol Meas. 2013;34(11):1399–410.

    Article  CAS  PubMed  Google Scholar 

  90. Hadjipanteli A, Kourkoumelis N, Speller R. Evaluation of CT-DEA performance on ca/P ratio assessment in bone apatite using EDX. X-Ray Spectrom. 2014;43(5):286–91.

    Article  CAS  Google Scholar 

  91. Hadjipanteli A, Kourkoumelis N, Fromme P, Huang J, Speller RD. Evaluation of the 3D spatial distribution of the calcium/phosphorus ratio in bone using computed-tomography dual-energy analysis. Phys Med. 2016;32(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  92. Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W, et al. Examining the relationships between bone tissue composition, compositional heterogeneity, and fragility fracture: a matched case-controlled FTIRI study. J Bone Miner Res. 2016;31(5):1070–81.

    Article  CAS  PubMed  Google Scholar 

  93. Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24(9):1565–71.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone. 2016;84:237–44.

    Article  CAS  PubMed  Google Scholar 

  95. Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.

    Article  CAS  PubMed  Google Scholar 

  96. Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, et al. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One. 2018;13(9):e0202833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gaidash AA, Sinitsa LN, Babenko OA, Lugovskoy AA. Nanoporous structure of bone matrix at osteoporosis from data of atomic force microscopy and IR spectroscopy. J Osteoporos. 2011;2011:1–7.

    Article  CAS  Google Scholar 

  98. Mathavan N, Turunen MJ, Tägil M, Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif Tissue Int. 2015;97(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  99. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kourkoumelis N, Balatsoukas I, Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys. 2012;38(2):279–91.

    Article  CAS  PubMed  Google Scholar 

  101. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  102. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int. 1997;61(6):487–92.

    Article  CAS  PubMed  Google Scholar 

  103. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27(4):541–50.

    Article  CAS  PubMed  Google Scholar 

  104. Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis a review. Clin Orthop Relat Res. 2006;443:28–38.

    Article  PubMed  Google Scholar 

  105. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.

    Article  CAS  PubMed  Google Scholar 

  107. Greenwood C, Clement J, Dicken A, Evans JP, Lyburn I, Martin RM, et al. Towards new material biomarkers for fracture risk. Bone. 2016;93:55–63.

    Article  CAS  PubMed  Google Scholar 

  108. Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int. 2013;92(5):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garcia I, Chiodo V, Ma Y, Boskey A. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connect Tissue Res. 2016;57(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  110. Miller LM, Novatt JT, Hamerman D, Carlson CS. Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Bone. 2004;35(2):498–506.

    Article  CAS  PubMed  Google Scholar 

  111. Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30(3):492–7.

    Article  CAS  PubMed  Google Scholar 

  112. Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone. 2000;26(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  113. Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R. Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc. 2004;58(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  114. Huang RY, Miller LM, Carlson CS, Chance MR. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone. 2003;33(4):514–21.

    Article  CAS  PubMed  Google Scholar 

  115. Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.

    Article  CAS  PubMed  Google Scholar 

  116. Ruppel ME, Burr DB, Miller LM. Chemical makeup of microdamaged bone differs from undamaged bone. Bone. 2006;39(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  117. Lani A, Kourkoumelis N, Baliouskas G, Tzaphlidou M. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy. J Biol Phys. 2014;40(4):401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Saito M, Marumo KM. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.

    Article  CAS  PubMed  Google Scholar 

  119. SY T, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6.

    Article  Google Scholar 

  120. Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427–35.

    Article  PubMed  Google Scholar 

  121. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    Article  CAS  PubMed  Google Scholar 

  122. Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.

    Article  PubMed  Google Scholar 

  123. Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4.

    Article  PubMed  Google Scholar 

  125. Wen XX, Wang FQ, Xu C, Wu ZX, Zhang Y, Feng YF, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS One. 2015;10(6):e0127973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Imbert L, Boskey A. Effects of drugs on bone quality. Clin Rev Bone Miner Metab. 2016;14(3):167–96.

    Article  CAS  Google Scholar 

  127. Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical femur fractures—review of epidemiology, relationship to bisphosphonates, prevention and clinical management. Endocr Rev. 2018; https://doi.org/10.1210/er.2018-00001.

  128. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55(2):495–500.

    Article  CAS  PubMed  Google Scholar 

  129. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.

    Article  CAS  PubMed  Google Scholar 

  130. Errassifi F, Sarda S, Barroug A, Legrouri A, Sfihi H, Rey C. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interface Sci. 2014;420:101–11.

    Article  CAS  PubMed  Google Scholar 

  131. Rey C, Combes C, Drouet C, Sfihi H, Barroug A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C. 2007;27(2):198–205.

    Article  CAS  Google Scholar 

  132. Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20(5):793–800.

    Article  CAS  PubMed  Google Scholar 

  133. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, et al. Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res. 2011;26(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  134. Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, et al. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27(5):995–1003.

    Article  CAS  PubMed  Google Scholar 

  135. Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci. 2017;114(33):8722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55.

    Article  CAS  PubMed  Google Scholar 

  137. Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res. 2008;23(11):1712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, et al. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int. 2018;29(3):699–705.

    Article  CAS  PubMed  Google Scholar 

  139. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46(3):666–72.

    Article  CAS  PubMed  Google Scholar 

  140. Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, et al. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33(6):960–9.

    Article  CAS  PubMed  Google Scholar 

  141. Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.

    Article  CAS  PubMed  Google Scholar 

  142. Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52(1):326–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kourkoumelis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourkoumelis, N., Zhang, X., Lin, Z. et al. Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clinic Rev Bone Miner Metab 17, 24–39 (2019). https://doi.org/10.1007/s12018-018-9255-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-018-9255-y

Keywords

Navigation