Skip to main content

Advertisement

Log in

Understanding Bone Strength from Finite Element Models: Concepts for Non-engineers

  • Bone quality
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Recent clinical studies have reported not only changes in bone mineral density in patient populations but also changes in bone strength determined using finite element modeling. Finite element modeling is a technique well established in engineering but unfamiliar to many clinicians and basic biologists. Here, we provide a conceptual introduction to finite element modeling and its clinical applications to bone that is written for individuals without any background in engineering. Finite element modeling of bone is the net result of over 60 years of effort in the engineering community and over 40 years of effort in the field of bone biomechanics. We discuss the mathematical and theoretical basis for finite element modeling, how finite element models are created from clinical images and the assumptions made in using finite element models to estimate whole bone strength. In addition, we discuss the limitations of finite element modeling in patient populations with altered bone tissue quality. Clinical studies have shown that prediction of fracture risk using finite element modeling is as effective, and in some cases superior, to simple measures of bone mineral density. Further application of finite element modeling to clinical studies has the potential to improve fracture risk assessment beyond what is currently possible with bone mineral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Kanis JA. Assessment of fracture risk and its applications to screening of postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81.

    Article  CAS  PubMed  Google Scholar 

  2. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44:734–43.

    Article  PubMed  Google Scholar 

  3. Kanis JA, Oden A, Johansson H, McCloskey EV. Fracture risk assessment: the development and application of FRAX. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. Waltham: Academic Press; 2013. p. 1611–40.

    Chapter  Google Scholar 

  4. Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann NY Acad Sci. 2010;1192:57–65.

    Article  PubMed  Google Scholar 

  5. Lang TF, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Chengshi J, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Keyak JH. Age-related loss of proximal femoral strength in elderly men and women: the age gene/environment susceptibility study-Reykjavik. Bone. 2012;50:743–8.

    Article  CAS  PubMed  Google Scholar 

  6. Zysset PK, Dall’ara E, Varga P, Pahr DH. Finite element analysis for prediction of bone strength. Bonekey Rep. 2013;2:386.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thomee V. From finite differences to finite elements—a short history of numerical analysis of partial differential equations. J Comput Appl Math. 2001;128:1–54.

    Article  Google Scholar 

  8. Lenaerts L, van Lenthe GH. Multi-level patient-specific modelling of the proximal femur. A promising tool to quantify the effect of osteoporosis treatment. Philos Trans A Math Phys Eng Sci. 2009;367:2079–93.

    Article  PubMed  Google Scholar 

  9. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom. 2015;18:359–92.

    Article  PubMed  Google Scholar 

  10. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.

    Article  PubMed  Google Scholar 

  11. Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res. 1994;28:1329–36.

    Article  CAS  PubMed  Google Scholar 

  12. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  PubMed  Google Scholar 

  13. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.

    Article  CAS  PubMed  Google Scholar 

  14. Jackman TM, DelMonaco AM, Morgan EF. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. J Biomech. 2016;49:267–75.

    Article  PubMed  Google Scholar 

  15. Pentecost RL, Murray RA, Brindley HH. Fatigue, insufficiency, and pathologic fractures. JAMA. 1964;187:1001–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from material research. Bone. 2013;55:495–500.

    Article  CAS  PubMed  Google Scholar 

  17. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthr Rheum. 2003;48:3224–9.

    Article  Google Scholar 

  19. Premaor M, Compston J. Obesity, diabetes and fractures. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. San Diego: Academic Press; 2013. p. 1331–48.

    Chapter  Google Scholar 

  20. Keyak JH, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone. 2013;57:18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29:158–65.

    Article  CAS  PubMed  Google Scholar 

  22. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zysset P, Pahr D, Engelke K, Genant HK, McClung MR, Kendler DL, Recknor C, Kinzl M, Schwiedrzik J, Museyko O, Wang A, Libanati C. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone. 2015;81:122–30.

    Article  PubMed  Google Scholar 

  24. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (USA) under Award Number AR057362 and NSF grant number 1068560 and the National Science Foundation Graduate Research Fellowship under Grant Number DGE-1144153. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Hernandez.

Ethics declarations

Conflict of interest

Christopher J. Hernandez and Erin N. Cresswell have no potential conflict of interest.

Animal and Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, C.J., Cresswell, E.N. Understanding Bone Strength from Finite Element Models: Concepts for Non-engineers. Clinic Rev Bone Miner Metab 14, 161–166 (2016). https://doi.org/10.1007/s12018-016-9218-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9218-0

Keywords

Navigation