Skip to main content
Log in

Resveratrol Improves Neuroimmune Dysregulation Through the Inhibition of Neuronal Toll-Like Receptors and COX-2 Signaling in BTBR T+ Itpr3tf/J Mice

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Autism is a neurodevelopmental disorder characterized by deficits in qualitative impairments in communication, repetitive and social interaction, restricted, and stereotyped patterns of behavior. Resveratrol has been extensively studied pharmacologically and biologically and has anti-inflammatory, antioxidant, and neuroprotective effects on neuronal damage in neurodegenerative disorders. The BTBR T+ Itpr3tf/J (BTBR) autistic mouse model has been explored for treatment of autism, which shows low reciprocal social interactions, impaired juvenile play, and decreased social approach. Here, we explored whether resveratrol treatment decreases neuroimmune dysregulation mediated through toll-like receptor (TLR4) and nuclear factor-κB (NF-κB) signaling pathway in BTBR mice. We investigated the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, and inducible nitric oxide synthase (iNOS or NOS2) levels in CD4 spleen cells. We also assessed the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, iNOS, and cyclooxygenase (COX-2) mRNA expression levels in the brain tissue. We further explored TLR2, TLR4, NF-κB, iNOS, and COX-2 protein expression levels in the brain tissue. Resveratrol treatment on BTBR mice significantly decreased CD4+TLR2+, CD4+TLR3+, CD4+TLR4+ CD4+NF-κB+, and CD4+iNOS+ levels in spleen cells. Resveratrol treatment on BTBR mice decreased TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 mRNA expression levels in brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression of TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 in brain tissue. Taken together, these results indicate that resveratrol treatment improves neuroimmune dysregulation through the inhibition of proinflammatory mediators and TLRs/NF-κB transcription factor signaling, which might be help devise future therapies for neuroimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, S. F., Ansari, M. A., Nadeem, A., Bakheet, S. A., Mohammad, R., & Attia, S. M. (2017a). Immune alterations in CD8 + T cells are associated with neuronal CC and CXC chemokine receptor regulation through adenosine A2A receptor signaling in a BTBR T+ Itpr3tf/J autistic mouse model. Molecular Neurobiology. https://doi.org/10.1007/s12035-017-0548-9.

    Google Scholar 

  • Ahmad, S. F., Ansari, M. A., Nadeem, A., Zoheir, K. M., Bakheet, S. A., et al. (2017b). STA-21, a STAT-3 inhibitor, attenuates the development and progression of inflammation in collagen antibody-induced arthritis. Immunobiology, 222(2), 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S. F., Nadeem, A., Ansari, M. A., Bakheet, S. A., Attia, S. M., et al. (2017c). Imbalance between the anti- and pro-inflammatory milieu in blood leukocytes of autistic children. Molecular Immunology, 82, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Korashy, H. M., Bakheet, S. A., Ashour, A. E., et al. (2015a). The role of poly (ADP-ribose) polymerase-1 inhibitor in carrageenan-induced lung inflammation in mice. Molecular Immunology, 63(2), 394–405.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Nadeem, A., Bakheet, S. A., Al-Ayadhi, L. Y., et al. (2017d). Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Molecular Neurobiology, 54(6), 4390–4400.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Nadeem, A., Bakheet, S. A., et al. (2015b). Histamine 4 receptor promotes expression of costimulatory B7.1/B7.2 molecules, CD28 signaling and cytokine production in stress-induced immune responses. Journal of Neuroimmunology, 289, 30–42.

    Article  CAS  PubMed  Google Scholar 

  • Al-Ayadhi, L. Y., & Mostafa, G. A. (2013). Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children. Journal of Neuroinflammation, 10, 72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, M. A., Attia, S. M., Nadeem, A., Bakheet, S. A., Raish, M., Khan, T. H., et al. (2017a). Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T+ Itpr3tf/J mice. Molecular and Cellular Neuroscience, 82, 76–87.

    Article  CAS  PubMed  Google Scholar 

  • Ansari, M. A., Nadeem, A., Attia, S. M., Bakheet, S. A., Raish, M., & Ahmad, S. F. (2017b). Adenosine A2A receptor modulates neuroimmune function through Th17/retinoid-related orphan receptor gamma t (RORγt) signaling in a BTBR T+ Itpr3tf/J mouse model of autism. Cellular Signalling, 36, 14–24.

    Article  CAS  PubMed  Google Scholar 

  • Ansari, M. A., Raish, M., Ahmad, A., Ahmad, S. F., Mudassar, S., et al. (2016). Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sciences, 165, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I., & Van de Water, J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behavior, and Immunity, 25, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Bakheet, S. A., Alzahrani, M. Z., Ansari, M. A., Nadeem, A., Zoheir, K. M., Attia, S. M., et al. (2017). Resveratrol ameliorates dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in a BTBR T + tf/J mouse model of autism. Molecular Neurobiology, 54(7), 5201–5212.

    Article  CAS  PubMed  Google Scholar 

  • Bakheet, S. A., Alzahrani, M. Z., Nadeem, A., Ansari, M. A., Zoheir, K. M., Attia, S. M., et al. (2016). Resveratrol treatment attenuates chemokine receptor expression in the BTBR T + tf/J mouse model of autism. Molecular and Cellular Neuroscience, 77, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Bambini-Junior, V., Zanatta, G., Della Flora Nunes, G., Mueller de Melo, G., et al. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Bechade, C., Colasse, S., Diana, M. A., Rouault, M., & Bessis, A. (2014). NOS2 expression is restricted to neurons in the healthy brain but is triggered in microglia upon inflammation. Glia, 62(6), 956–963.

    Article  PubMed  Google Scholar 

  • Bolivar, V. J., Walters, S. R., & Phoenix, J. L. (2007). Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behavioural Brain Research, 176, 21–26.

    Article  PubMed  Google Scholar 

  • Broom, L., Marinova-Mutafchieva, L., Sadeghian, M., Davis, J. B., Medhurst, A. D., & Dexter, D. T. (2011). Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radical Biology and Medicine, 50(5), 633–640.

    Article  CAS  PubMed  Google Scholar 

  • Bsibsi, M., Ravid, R., Gveric, D., & van Noort, J. M. (2002). Broad expression of Toll-like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 61, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Camandola, S., & Mattson, M. P. (2007). NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opinion on Therapeutic Targets, 11, 1230132.

    Article  Google Scholar 

  • Chana, G., Laskaris, L., Pantelis, C., Gillett, P., et al. (2015). Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: Pathophysiological and neurobehavioral implications. Brain, Behavior, and Immunity, 49, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Castranova, V., & Shi, X. (2001). New insights into the role of nuclear factor-κB in cell growth regulation. American Journal of Pathology, 159(2), 387–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DSM-IV. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Enstrom, A. M., Lit, L., Onore, C. E., Gregg, J. P., Hansen, R. L., Pessah, I. N., et al. (2009). Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain, Behavior, and Immunity, 23(1), 124–133.

    Article  CAS  PubMed  Google Scholar 

  • Field, R., Campion, S., Warren, C., Murray, C., & Cunningham, C. (2010). Systemic challenge with the TLR3 agonist poly I: C induces amplified IFNα/β and IL-1β responses in the diseased brain and exacerbates chronic neurodegeneration. Brain, Behavior, and Immunity, 24, 996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbett, K., Ebert, P. J., Mitchell, A., Lintas, C., Manzi, B., Mirnics, K., et al. (2008). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiology of Diseases, 30, 303–311.

    Article  CAS  Google Scholar 

  • Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140, 918–93410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorina, R., Font-Nieves, M., Márquez-Kisinousky, L., Santalucia, T., & Planas, A. M. (2011). Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia, 59, 242–255.

    Article  PubMed  Google Scholar 

  • Hanke, M. L., & Kielian, T. (2011). Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential. Clinical Science (London), 121, 367–387.

    Article  CAS  Google Scholar 

  • Hoffmann, O., Braun, J. S., Becker, D., Halle, A., Freyer, D., Dagand, E., et al. (2007). TLR2 mediates neuroinflammation and neuronal damage. Journal of Immunology, 178, 6476–6481.

    Article  CAS  Google Scholar 

  • Hong, J. H., Lee, H., & Lee, S. R. (2016). Protective effect of resveratrol against neuronal damage following transient global cerebral ischemia in mice. Journal of Nutritional Biochemistry, 27, 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T. C., Lu, K. T., Wo, Y. Y., Wu, Y. J., & Yang, Y. L. (2012). Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS ONE, 6, e29102.

    Article  Google Scholar 

  • Husain, I., Akhtar, M., Vohora, D., Abdin, M. Z., Islamuddin, M., Akhtar, M. J., et al. (2017). Rosuvastatin attenuates high-salt and cholesterol diet induced neuroinflammation and cognitive impairment via preventing nuclear factor κB pathway. Neurochemical Research. https://doi.org/10.1007/s11064-017-2264-2.

    PubMed  Google Scholar 

  • Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., et al. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175(7), 4320–4330.

    Article  CAS  Google Scholar 

  • Jackson, A. C., Rossiter, J. P., & Lafon, M. (2006). Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases. Journal of NeuroVirology, 12(3), 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Jin, J. J., Kim, H. D., Maxwell, J. A., Li, L., & Fukuchi, K. (2008). Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. Journal of Neuroinflammation, 5, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laflamme, N., Echchannaoui, H., Landmann, R., & Rivest, S. (2003). Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. European Journal of Immunology, 33, 1127–1138.

    Article  CAS  PubMed  Google Scholar 

  • Lafon, M., Megret, F., Lafage, M., & Prehaud, C. (2006). The innate immune facet of brain: Human neurons express TLR-3 and sense viral dsRNA. Journal of Molecular Neuroscience, 29, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Lehnardt, S., Lachance, C., Patrizi, S., Lefebvre, S., Follett, P. L., Jensen, F. E., et al. (2002). The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. Journal of Neuroscience, 22, 2478–2486.

    CAS  PubMed  Google Scholar 

  • Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1–2), 111–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H. Y., Chen, C. Y., & Hsueh, Y. P. (2014). Innate immune responses regulate morphogenesis and degeneration: Roles of Toll-like receptors and Sarm1 in neurons. Neuroscience Bulletin, 30, 645–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, C., Leventhal, B. L., & Cook, E. H. (2001). Quantifying the phenotype in autism spectrum disorders. American Journal of Medical Genetics, 105, 36–38.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, J., & Moreno, J. J. (2000). Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochemical Pharmacology, 59(7), 865–870.

    Article  CAS  PubMed  Google Scholar 

  • McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes, Brain and Behavior, 7(2), 152–163.

    Article  CAS  Google Scholar 

  • Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, B. B., Mishra, P. K., & Teale, J. M. (2006). Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. Journal of Neuroimmunology, 181(1–2), 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya, J., Chen, R., Yamakawa, J., Sasaki, K., Ishigaki, Y., & Takahashi, T. (2011). Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biological &/and Pharmaceutical Bulletin, 34(3), 354–359.

    Article  CAS  Google Scholar 

  • Nadeem, A., Ahmad, S. F., Bakheet, S. A., Al-Harbi, N. O., Al-Ayadhi, L. Y., Attia, S. M., et al. (2017). Toll-like receptor 4 signaling is associated with upregulated NADPH oxidase expression in peripheral T cells of children with autism. Brain, Behavior, and Immunity, 61, 146–154.

    Article  CAS  PubMed  Google Scholar 

  • Naik, U. S., Gangadharan, C., Abbagani, K., et al. (2011). A study of nuclear transcription factor κB in childhood autism. PLoS ONE, 6, e19488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okun, E., Griffioen, K. J., & Mattson, M. P. (2011). Toll-like receptor signaling in neural plasticity and disease. Trends in Neurosciences, 34, 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsivadjian, A., Hibberd, C., & Hollocks, M. J. (2014). Brief report: The use of self-report measures in young people with autism spectrum disorder to access symptoms of anxiety, depression and negative thoughts. Journal of Autism and Developmental Disorders, 44, 969–974.

    Article  PubMed  Google Scholar 

  • Pang, C., Cao, L., Wu, F., Wang, L., Wang, G., Yu, Y., et al. (2015). The effect of trans-resveratrol on post-stroke depression via regulation of hypothalamus–pituitary–adrenal axis. Neuropharmacology, 97, 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, P. H. (2011). Maternal infection and immune involvement in autism. Trends in Molecular Medicine, 17, 389–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, B. L., Pobbe, R. L., Defensor, E. B., Oasay, L., Bolivar, V. J., Blanchard, D. C., et al. (2011). Motor and cognitive stereotypies in the BTBR T + tf/J mouse model of autism. Genes, Brain and Behavior, 10(2), 228–235.

    Article  CAS  Google Scholar 

  • Pineda-Ramírez, N., Gutiérrez Aguilar, G. F., Espinoza-Rojo, M., & Aguilera, P. (2017). Current evidence for AMPK activation involvement on resveratrol-induced neuroprotection in cerebral ischemia. Nutritional Neuroscience, 14, 1–19.

    Article  Google Scholar 

  • Prehaud, C., Megret, F., Lafage, M., & Lafon, M. (2005). Viral infection switches TLR-3-positive human neurons to become strong producers of beta interferon. Journal of Virology, 79, 12893–12904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege, S. D., Geetha, T., Griffin, G. D., Broderick, T. L., & Babu, J. R. (2014). Neuroprotective effects of resveratrol in Alzheimer disease pathology. Frontiers in Aging Neuroscience, 6, 218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, J., Fan, C., Chen, N., Huang, J., & Yang, Q. (2011). Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in Rats. Neurochemical Research, 36, 2352–2362.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, A., Shechter, R., London, A., Ziv, Y., Ronen, A., Levy, R., et al. (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell Biology, 9(9), 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2014). Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Frontiers in Physiology, 5, 150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, C., Cheng, W., Yu, P., Wang, L., Zhou, L., Zeng, L., et al. (2016). Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro. Molecular Medicine Reports, 14(4), 3646–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindler, K. S., Ventura, E., Dutt, M., Elliott, P., Fitzgerald, D. C., & Rostami, A. (2010). Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. Journal of Neuro-Ophthalmology, 30, 328–339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shishodia, S., & Aggarwal, B. B. (2002). Nuclear factor-κB activation: A question of life and death. Journal of Biochemistry and Molecular Biology, 35, 28.

    CAS  PubMed  Google Scholar 

  • Silverman, J. L., Tolu, S. S., Barkan, C. L., & Crawley, J. N. (2010). Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology, 35(4), 976–989.

    Article  CAS  PubMed  Google Scholar 

  • Stridh, L., Smith, P. L., Naylor, A. S., Wang, X., & Mallard, C. (2011). Regulation of toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia. Journal of Neuroinflammation, 8, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K., et al. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NFκ B activation. Mutation Research, 480, 243–268.

    Article  PubMed  Google Scholar 

  • Trotta, T., Porro, C., Calvello, R., & Panaro, M. A. (2014). Biological role of Toll-like receptor-4 in the brain. Journal of Neuroimmunology, 268, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • von Ziegler, L. M., Saab, B. J., & Mansuy, I. M. (2013). A simple and fast method for tissue cryohomogenization enabling multifarious molecular extraction. Journal of Neuroscience Methods, 216(2), 137–141.

    Article  Google Scholar 

  • Yagami, T., Koma, H., & Yamamoto, Y. (2016). Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Molecular Neurobiology, 53(7), 4754–4771.

    Article  CAS  PubMed  Google Scholar 

  • Zekki, H., Feinstein, D. L., & Rivest, S. (2002). The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathology, 12(3), 308–319.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X. M., Zhou, M. L., Zhang, X. S., et al. (2014). Resveratrol prevents neuronal apoptosis in an early brain injury model. Journal of Surgical Research, 189, 159–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group Project No. RGP-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh F. Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.F., Ansari, M.A., Nadeem, A. et al. Resveratrol Improves Neuroimmune Dysregulation Through the Inhibition of Neuronal Toll-Like Receptors and COX-2 Signaling in BTBR T+ Itpr3tf/J Mice. Neuromol Med 20, 133–146 (2018). https://doi.org/10.1007/s12017-018-8483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-8483-0

Keywords

Navigation