Skip to main content

Advertisement

Log in

SUMO Rules: Regulatory Concepts and Their Implication in Neurologic Functions

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews, E. A., Palecek, J., Sergeant, J., Taylor, E., Lehmann, A. R., & Watts, F. Z. (2005). Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Molecular and Cellular Biology, 25(1), 185–196.

    PubMed  CAS  Google Scholar 

  • Aslanukov, A., Bhowmick, R., Guruju, M., Oswald, J., Raz, D., Bush, R. A., et al. (2006). RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism. PLoS Genetics, 2(10), e177.

    PubMed  Google Scholar 

  • Azuma, Y., Arnaoutov, A., Anan, T., & Dasso, M. (2005). PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO Journal, 24(12), 2172–2182.

    PubMed  CAS  Google Scholar 

  • Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N., & Elledge, S. J. (2002). The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Molecular Cell, 9(6), 1169–1182.

    PubMed  CAS  Google Scholar 

  • Bailey, D., & O’Hare, P. (2002). Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. Journal of General Virology, 83(Pt 12), 2951–2964.

    PubMed  CAS  Google Scholar 

  • Baldwin, M. L., Julius, J. A., Tang, X., Wang, Y., & Bachant, J. (2009). The yeast SUMO isopeptidase Smt4/Ulp2 and the polo kinase Cdc5 act in an opposing fashion to regulate sumoylation in mitosis and cohesion at centromeres. Cell Cycle, 8(20), 3406–3419.

    PubMed  CAS  Google Scholar 

  • Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., et al. (1998). Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of Molecular Biology, 280(2), 275–286.

    PubMed  CAS  Google Scholar 

  • Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., & Schulman, B. A. (2002). Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. Journal of Biological Chemistry, 277(49), 47938–47945.

    PubMed  CAS  Google Scholar 

  • Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., & Lima, C. D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell, 108(3), 345–356.

    PubMed  CAS  Google Scholar 

  • Bettermann, K., Benesch, M., Weis, S., & Haybaeck, J. (2012). SUMOylation in carcinogenesis. Cancer Letters, 316(2), 113–125.

    PubMed  CAS  Google Scholar 

  • Blomster, H. A., Imanishi, S. Y., Siimes, J., Kastu, J., Morrice, N. A., Eriksson, J. E., et al. (2010). In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. Journal of Biological Chemistry, 285(25), 19324–19329.

    PubMed  CAS  Google Scholar 

  • Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F., & Chiocca, S. (2004). A mechanism for inhibiting the SUMO pathway. Molecular Cell, 16(4), 549–561.

    PubMed  CAS  Google Scholar 

  • Boggio, R., Passafaro, A., & Chiocca, S. (2007). Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. Journal of Biological Chemistry, 282(21), 15376–15382.

    PubMed  CAS  Google Scholar 

  • Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., & Owerbach, D. (2004). A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. Journal of Biological Chemistry, 279(26), 27233–27238.

    PubMed  CAS  Google Scholar 

  • Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.

    PubMed  CAS  Google Scholar 

  • Branzei, D., Sollier, J., Liberi, G., Zhao, X., Maeda, D., Seki, M., et al. (2006). Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell, 127(3), 509–522.

    PubMed  CAS  Google Scholar 

  • Braschi, E., Zunino, R., & McBride, H. M. (2009). MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Reports, 10(7), 748–754.

    PubMed  CAS  Google Scholar 

  • Bruderer, R., Tatham, M. H., Plechanovova, A., Matic, I., Garg, A. K., & Hay, R. T. (2011). Purification and identification of endogenous polySUMO conjugates. EMBO Reports, 12(2), 142–148.

    PubMed  CAS  Google Scholar 

  • Burgess, R. C., Rahman, S., Lisby, M., Rothstein, R., & Zhao, X. (2007). The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Molecular and Cellular Biology, 27(17), 6153–6162.

    PubMed  CAS  Google Scholar 

  • Burn, B., Brown, S., & Chang, C. (2011). Regulation of early Xenopus development by the PIAS genes. Developmental Dynamics, 240(9), 2120–2126.

    PubMed  CAS  Google Scholar 

  • Cai, Q., Verma, S. C., Kumar, P., Ma, M., & Robertson, E. S. (2010). Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS ONE, 5(3), e9720.

    PubMed  Google Scholar 

  • Capili, A. D., & Lima, C. D. (2007). Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. Journal of Molecular Biology, 369(3), 608–618.

    PubMed  CAS  Google Scholar 

  • Castillo-Lluva, S., Tatham, M. H., Jones, R. C., Jaffray, E. G., Edmondson, R. D., Hay, R. T., et al. (2010). SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nature Cell Biology, 12(11), 1078–1085.

    PubMed  CAS  Google Scholar 

  • Chan, D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46, 265–287.

    PubMed  CAS  Google Scholar 

  • Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., et al. (2011). Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Molecular Cell, 42(1), 62–74.

    PubMed  CAS  Google Scholar 

  • Chen, S. F., Gong, C., Luo, M., Yao, H. R., Zeng, Y. J., & Su, F. X. (2011). Ubc9 expression predicts chemoresistance in breast cancer. Chin J Cancer, 30(9), 638–644.

    PubMed  CAS  Google Scholar 

  • Chen, X. L., Silver, H. R., Xiong, L., Belichenko, I., Adegite, C., & Johnson, E. S. (2007). Topoisomerase I-dependent viability loss in saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics, 177(1), 17–30.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S., & Yeh, E. T. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 131(3), 584–595.

    PubMed  CAS  Google Scholar 

  • Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., et al. (2006). SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes & Development, 20(15), 2067–2081.

    CAS  Google Scholar 

  • Chiu, S. Y., Asai, N., Costantini, F., & Hsu, W. (2008). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biology, 6(12), e310.

    PubMed  Google Scholar 

  • Cho, K. I., Searle, K., Webb, M., Yi, H., & Ferreira, P. A. (2012). Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cellular and Molecular Life Sciences, 69(20), 3511–3527.

    PubMed  CAS  Google Scholar 

  • Chu, Y., & Yang, X. (2011). SUMO E3 ligase activity of TRIM proteins. Oncogene, 30(9), 1108–1116.

    PubMed  CAS  Google Scholar 

  • Cimarosti, H., Lindberg, C., Bomholt, S. F., Ronn, L. C., & Henley, J. M. (2008). Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology, 54(2), 280–289.

    PubMed  CAS  Google Scholar 

  • Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., & Taylor, C. T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proceedings of National Academy of Sciences of the United States of America, 100(3), 986–991.

    CAS  Google Scholar 

  • Cubenas-Potts, C., & Matunis, M. J. (2013). SUMO: A multifaceted modifier of chromatin structure and function. Developmental Cell, 24(1), 1–12.

    PubMed  CAS  Google Scholar 

  • Danielsen, J. R., Povlsen, L. K., Villumsen, B. H., Streicher, W., Nilsson, J., Wikstrom, M., et al. (2012). DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. Journal of Cell Biology, 197(2), 179–187.

    PubMed  CAS  Google Scholar 

  • Datwyler, A. L., Lattig-Tunnemann, G., Yang, W., Paschen, W., Lee, S. L., Dirnagl, U., et al. (2011). SUMO2/3 conjugation is an endogenous neuroprotective mechanism. Journal of Cerebral Blood Flow and Metabolism, 31(11), 2152–2159.

    PubMed  CAS  Google Scholar 

  • Dawlaty, M. M., Malureanu, L., Jeganathan, K. B., Kao, E., Sustmann, C., Tahk, S., et al. (2008). Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell, 133(1), 103–115.

    PubMed  CAS  Google Scholar 

  • Depaux, A., Regnier-Ricard, F., Germani, A., & Varin-Blank, N. (2007). A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene, 26(46), 6665–6676.

    PubMed  CAS  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274(15), 10618–10624.

    PubMed  CAS  Google Scholar 

  • Desterro, J. M., Thomson, J., & Hay, R. T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Letters, 417(3), 297–300.

    PubMed  CAS  Google Scholar 

  • Di Bacco, A., Ouyang, J., Lee, H. Y., Catic, A., Ploegh, H., & Gill, G. (2006). The SUMO-specific protease SENP5 is required for cell division. Molecular and Cellular Biology, 26(12), 4489–4498.

    PubMed  Google Scholar 

  • Dong, M., Pang, X., Xu, Y., Wen, F., & Zhang, Y. (2013). Ubiquitin-conjugating enzyme 9 promotes epithelial ovarian cancer cell proliferation in vitro. International Journal of Molecular Sciences, 14(6), 11061–11071.

    PubMed  CAS  Google Scholar 

  • Dorval, V., Mazzella, M. J., Mathews, P. M., Hay, R. T., & Fraser, P. E. (2007). Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochemical Journal, 404(2), 309–316.

    PubMed  CAS  Google Scholar 

  • Duda, D. M., van Waardenburg, R. C., Borg, L. A., McGarity, S., Nourse, A., Waddell, M. B., et al. (2007). Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. Journal of Molecular Biology, 369(3), 619–630.

    PubMed  CAS  Google Scholar 

  • Dutting, E., Schroder-Kress, N., Sticht, H., & Enz, R. (2011). SUMO E3 ligases are expressed in the retina and regulate SUMOylation of the metabotropic glutamate receptor 8b. Biochemical Journal, 435(2), 365–371.

    PubMed  Google Scholar 

  • Erker, Y., Neyret-Kahn, H., Seeler, J. S., Dejean, A., Atfi, A., & Levy, L. (2013). Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Molecular and Cellular Biology, 33(11), 2163–2177.

    PubMed  CAS  Google Scholar 

  • Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M., & Kuehn, M. R. (2008). Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. Journal of Cell Science, 121(Pt 24), 4106–4113.

    PubMed  CAS  Google Scholar 

  • Fan, J., Ren, H., Fei, E., Jia, N., Ying, Z., Jiang, P., et al. (2008). Sumoylation is critical for DJ-1 to repress p53 transcriptional activity. FEBS Letters, 582(7), 1151–1156.

    PubMed  CAS  Google Scholar 

  • Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochemical and Biophysical Research Communications, 347(2), 406–412.

    PubMed  CAS  Google Scholar 

  • Flotho, A., & Melchior, F. (2013). Sumoylation: A regulatory protein modification in health and disease. Annual Review of Biochemistry, 82, 357–385.

    PubMed  CAS  Google Scholar 

  • Galanty, Y., Belotserkovskaya, R., Coates, J., & Jackson, S. P. (2012). RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes & Development, 26(11), 1179–1195.

    CAS  Google Scholar 

  • Galanty, Y., Belotserkovskaya, R., Coates, J., Polo, S., Miller, K. M., & Jackson, S. P. (2009). Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 462(7275), 935–939.

    PubMed  CAS  Google Scholar 

  • Garcia-Dominguez, M., & Reyes, J. C. (2009). SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica et Biophysica Acta, 1789(6–8), 451–459.

    PubMed  CAS  Google Scholar 

  • Garcia-Gutierrez, P., Juarez-Vicente, F., Gallardo-Chamizo, F., Charnay, P., & Garcia-Dominguez, M. (2011). The transcription factor Krox20 is an E3 ligase that sumoylates its Nab coregulators. EMBO Reports, 12(10), 1018–1023.

    PubMed  CAS  Google Scholar 

  • Gareau, J. R., & Lima, C. D. (2010). The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nature Reviews Molecular Cell Biology, 11(12), 861–871.

    PubMed  CAS  Google Scholar 

  • Gareau, J. R., Reverter, D., & Lima, C. D. (2012). Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. Journal of Biological Chemistry, 287(7), 4740–4751.

    PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews Molecular Cell Biology, 8(12), 947–956.

    PubMed  CAS  Google Scholar 

  • Geoffroy, M. C., & Hay, R. T. (2009). An additional role for SUMO in ubiquitin-mediated proteolysis. Nature Reviews Molecular Cell Biology, 10(8), 564–568.

    PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., et al. (2003). P300 transcriptional repression is mediated by SUMO modification. Molecular Cell, 11(4), 1043–1054.

    PubMed  CAS  Google Scholar 

  • Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 2(72), ra24.

    Google Scholar 

  • Gong, L., Kamitani, T., Fujise, K., Caskey, L. S., & Yeh, E. T. (1997). Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. Journal of Biological Chemistry, 272(45), 28198–28201.

    PubMed  CAS  Google Scholar 

  • Gong, L., Millas, S., Maul, G. G., & Yeh, E. T. (2000). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry, 275(5), 3355–3359.

    PubMed  CAS  Google Scholar 

  • Gong, L., & Yeh, E. T. (2006). Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. Journal of Biological Chemistry, 281(23), 15869–15877.

    PubMed  CAS  Google Scholar 

  • Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., & Henley, J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO Journal, 32(11), 1514–1528.

    PubMed  CAS  Google Scholar 

  • Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genetics, 36(8), 837–841.

    PubMed  CAS  Google Scholar 

  • Guzzo, C. M., Berndsen, C. E., Zhu, J., Gupta, V., Datta, A., Greenberg, R. A., et al. (2012). RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Science Signaling, 5(253), ra88.

    Google Scholar 

  • Hamada, M., Haeger, A., Jeganathan, K. B., van Ree, J. H., Malureanu, L., Walde, S., et al. (2011). Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. Journal of Cell Biology, 194(4), 597–612.

    PubMed  CAS  Google Scholar 

  • Hang, J., & Dasso, M. (2002). Association of the human SUMO-1 protease SENP2 with the nuclear pore. Journal of Biological Chemistry, 277(22), 19961–19966.

    PubMed  CAS  Google Scholar 

  • Harder, Z., Zunino, R., & McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology, 14(4), 340–345.

    PubMed  CAS  Google Scholar 

  • Hattersley, N., Shen, L., Jaffray, E. G., & Hay, R. T. (2011). The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Molecular Biology of the Cell, 22(1), 78–90.

    PubMed  CAS  Google Scholar 

  • Hay, R. T. (2007). SUMO-specific proteases: A twist in the tail. Trends in Cell Biology, 17(8), 370–376.

    PubMed  CAS  Google Scholar 

  • Heaton, P. R., Deyrieux, A. F., Bian, X. L., & Wilson, V. G. (2011). HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Research, 158(1–2), 199–208.

    PubMed  CAS  Google Scholar 

  • Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281(23), 16117–16127.

    PubMed  CAS  Google Scholar 

  • Hickey, C. M., Wilson, N. R., & Hochstrasser, M. (2012). Function and regulation of SUMO proteases. Nature Reviews Molecular Cell Biology, 13(12), 755–766.

    PubMed  CAS  Google Scholar 

  • Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of National Academy of Sciences of the United States of America, 103(1), 45–50.

    CAS  Google Scholar 

  • Hochstrasser, M. (2001). SP-RING for SUMO: New functions bloom for a ubiquitin-like protein. Cell, 107(1), 5–8.

    PubMed  CAS  Google Scholar 

  • Hoefer, J., Schafer, G., Klocker, H., Erb, H. H., Mills, I. G., Hengst, L., et al. (2012). PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. American Journal of Pathology, 180(5), 2097–2107.

    PubMed  CAS  Google Scholar 

  • Hsieh, Y. L., Kuo, H. Y., Chang, C. C., Naik, M. T., Liao, P. H., Ho, C. C., et al. (2013). Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response. EMBO Journal, 32(6), 791–804.

    PubMed  CAS  Google Scholar 

  • Huang, C., Han, Y., Wang, Y., Sun, X., Yan, S., Yeh, E. T., et al. (2009). SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO Journal, 28(18), 2748–2762.

    PubMed  CAS  Google Scholar 

  • Hudson, J. J., Chiang, S. C., Wells, O. S., Rookyard, C., & El-Khamisy, S. F. (2012). SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair. Nature Communications, 3, 733.

    PubMed  Google Scholar 

  • Ihara, M., Yamamoto, H., & Kikuchi, A. (2005). SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4. Molecular and Cellular Biology, 25(9), 3506–3518.

    PubMed  CAS  Google Scholar 

  • Irwin, S., Vandelft, M., Pinchev, D., Howell, J. L., Graczyk, J., Orr, H. T., et al. (2005). RNA association and nucleocytoplasmic shuttling by ataxin-1. Journal of Cell Science, 118(Pt 1), 233–242.

    PubMed  CAS  Google Scholar 

  • Itahana, Y., Yeh, E. T., & Zhang, Y. (2006). Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Molecular and Cellular Biology, 26(12), 4675–4689.

    PubMed  CAS  Google Scholar 

  • Jackson, S. P., & Durocher, D. (2013). Regulation of DNA damage responses by ubiquitin and SUMO. Molecular Cell, 49(5), 795–807.

    PubMed  CAS  Google Scholar 

  • Janer, A., Werner, A., Takahashi-Fujigasaki, J., Daret, A., Fujigasaki, H., Takada, K., et al. (2010). SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Human Molecular Genetics, 19(1), 181–195.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S., & Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. Journal of Biological Chemistry, 272(43), 26799–26802.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S., & Blobel, G. (1999). Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. Journal of Cell Biology, 147(5), 981–994.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S., & Gupta, A. A. (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 106(6), 735–744.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S., Schwienhorst, I., Dohmen, R. J., & Blobel, G. (1997). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO Journal, 16(18), 5509–5519.

    PubMed  CAS  Google Scholar 

  • Joseph, J., Tan, S. H., Karpova, T. S., McNally, J. G., & Dasso, M. (2002). SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. Journal of Cell Biology, 156(4), 595–602.

    PubMed  CAS  Google Scholar 

  • Kahyo, T., Nishida, T., & Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Molecular Cell, 8(3), 713–718.

    PubMed  CAS  Google Scholar 

  • Kim, J. H., & Baek, S. H. (2009). Emerging roles of desumoylating enzymes. Biochimica et Biophysica Acta, 1792(3), 155–162.

    PubMed  CAS  Google Scholar 

  • Kim, K. I., Baek, S. H., & Chung, C. H. (2002). Versatile protein tag, SUMO: Its enzymology and biological function. Journal of Cellular Physiology, 191(3), 257–268.

    PubMed  CAS  Google Scholar 

  • Kim, Y. M., Jang, W. H., Quezado, M. M., Oh, Y., Chung, K. C., Junn, E., et al. (2011). Proteasome inhibition induces alpha-synuclein SUMOylation and aggregate formation. Journal of the Neurological Sciences, 307(1–2), 157–161.

    PubMed  CAS  Google Scholar 

  • Kim, Y. H., Sung, K. S., Lee, S. J., Kim, Y. O., Choi, C. Y., & Kim, Y. (2005). Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Letters, 579(27), 6272–6278.

    PubMed  CAS  Google Scholar 

  • Klug, H., Xaver, M., Chaugule, V. K., Koidl, S., Mittler, G., Klein, F., et al. (2013). Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Molecular Cell, 50(5), 625–636.

    PubMed  CAS  Google Scholar 

  • Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., van Dijk, W. J., Fish, A., et al. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Molecular Cell, 31(3), 371–382.

    PubMed  CAS  Google Scholar 

  • Knipscheer, P., van Dijk, W. J., Olsen, J. V., Mann, M., & Sixma, T. K. (2007). Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO Journal, 26(11), 2797–2807.

    PubMed  CAS  Google Scholar 

  • Kolli, N., Mikolajczyk, J., Drag, M., Mukhopadhyay, D., Moffatt, N., Dasso, M., et al. (2010). Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochemical Journal, 430(2), 335–344.

    PubMed  CAS  Google Scholar 

  • Komander, D., & Rape, M. (2012). The ubiquitin code. Annual Review of Biochemistry, 81, 203–229.

    PubMed  CAS  Google Scholar 

  • Kotaja, N., Karvonen, U., Janne, O. A., & Palvimo, J. J. (2002). PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Molecular and Cellular Biology, 22(14), 5222–5234.

    PubMed  CAS  Google Scholar 

  • Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1), 49–60.

    PubMed  CAS  Google Scholar 

  • Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70(12), 2123–2138.

    PubMed  CAS  Google Scholar 

  • Kuo, M. L., den Besten, W., Thomas, M. C., & Sherr, C. J. (2008). Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle, 7(21), 3378–3387.

    PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., et al. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature Cell Biology, 10(5), 547–555.

    PubMed  CAS  Google Scholar 

  • Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., et al. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular & Cellular Proteomics. doi:10.1074/mcp.M112.025569.

  • Lee, M. H., Mabb, A. M., Gill, G. B., Yeh, E. T., & Miyamoto, S. (2011a). NF-kappaB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Molecular Cell, 43(2), 180–191.

    PubMed  Google Scholar 

  • Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S., et al. (2007). Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of Cerebral Blood Flow and Metabolism, 27(5), 950–962.

    PubMed  CAS  Google Scholar 

  • Lee, Y. J., Mou, Y., Maric, D., Klimanis, D., Auh, S., & Hallenbeck, J. M. (2011b). Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS ONE, 6(10), e25852.

    PubMed  CAS  Google Scholar 

  • Lee, J. H., Park, S. M., Kim, O. S., Lee, C. S., Woo, J. H., Park, S. J., et al. (2009). Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Molecular Cell, 35(6), 806–817.

    PubMed  CAS  Google Scholar 

  • Leitao, B. B., Jones, M. C., & Brosens, J. J. (2011). The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J, 25(10), 3416–3425.

    PubMed  CAS  Google Scholar 

  • Li, W., Bengtson, M. H., Ulbrich, A., Matsuda, A., Reddy, V. A., Orth, A., et al. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE, 3(1), e1487.

    PubMed  Google Scholar 

  • Li, S. J., & Hochstrasser, M. (1999). A new protease required for cell-cycle progression in yeast. Nature, 398(6724), 246–251.

    PubMed  CAS  Google Scholar 

  • Li, S. J., & Hochstrasser, M. (2000). The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and Cellular Biology, 20(7), 2367–2377.

    PubMed  CAS  Google Scholar 

  • Li, S. J., & Hochstrasser, M. (2003). The Ulp1 SUMO isopeptidase: Distinct domains required for viability, nuclear envelope localization, and substrate specificity. Journal of Cell Biology, 160(7), 1069–1081.

    PubMed  CAS  Google Scholar 

  • Li, Z., Hu, Q., Zhou, M., Vandenbrink, J., Li, D., Menchyk, N., et al. (2013a). Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnology Journal, 11(4), 432–445.

    PubMed  CAS  Google Scholar 

  • Li, H., Niu, H., Peng, Y., Wang, J., & He, P. (2013b). Ubc9 promotes invasion and metastasis of lung cancer cells. Oncology Reports, 29(4), 1588–1594.

    PubMed  CAS  Google Scholar 

  • Li, Y., Wang, H., Wang, S., Quon, D., Liu, Y. W., & Cordell, B. (2003). Positive and negative regulation of APP amyloidogenesis by sumoylation. Proceedings of National Academy of Sciences of the United States of America, 100(1), 259–264.

    CAS  Google Scholar 

  • Lima, C. D., & Reverter, D. (2008). Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. Journal of Biological Chemistry, 283(46), 32045–32055.

    PubMed  CAS  Google Scholar 

  • Liu, B., Mink, S., Wong, K. A., Stein, N., Getman, C., Dempsey, P. W., et al. (2004). PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunology, 5(9), 891–898.

    PubMed  CAS  Google Scholar 

  • Liu, B., & Shuai, K. (2001). Induction of apoptosis by protein inhibitor of activated Stat1 through c-Jun NH2-terminal kinase activation. Journal of Biological Chemistry, 276(39), 36624–36631.

    PubMed  CAS  Google Scholar 

  • Liu, B., Yang, Y., Chernishof, V., Loo, R. R., Jang, H., Tahk, S., et al. (2007). Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell, 129(5), 903–914.

    PubMed  CAS  Google Scholar 

  • Liu, B., Yang, R., Wong, K. A., Getman, C., Stein, N., Teitell, M. A., et al. (2005). Negative regulation of NF-kappaB signaling by PIAS1. Molecular and Cellular Biology, 25(3), 1113–1123.

    PubMed  CAS  Google Scholar 

  • Loftus, L. T., Gala, R., Yang, T., Jessick, V. J., Ashley, M. D., Ordonez, A. N., et al. (2009). Sumo-2/3-ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain Research, 1272, 71–80.

    PubMed  CAS  Google Scholar 

  • Loriol, C., Parisot, J., Poupon, G., Gwizdek, C., & Martin, S. (2012). Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system. PLoS ONE, 7(3), e33757.

    PubMed  CAS  Google Scholar 

  • Mahajan, R., Gerace, L., & Melchior, F. (1998). Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. Journal of Cell Biology, 140(2), 259–270.

    PubMed  CAS  Google Scholar 

  • Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447(7142), 321–325.

    PubMed  CAS  Google Scholar 

  • Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., & Beyreuther, K. (1985). Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO Journal, 4(11), 2757–2763.

    PubMed  CAS  Google Scholar 

  • Matic, I., Macek, B., Hilger, M., Walther, T. C., & Mann, M. (2008a). Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. Journal of Proteome Research, 7(9), 4050–4057.

    PubMed  CAS  Google Scholar 

  • Matic, I., Schimmel, J., Hendriks, I. A., van Santen, M. A., van de Rijke, F., van Dam, H., et al. (2010). Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Molecular Cell, 39(4), 641–652.

    PubMed  CAS  Google Scholar 

  • Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., et al. (2008b). In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and Cellular Proteomics, 7(1), 132–144.

    PubMed  CAS  Google Scholar 

  • Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H., & Melchior, F. (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Molecular Cell, 30(5), 610–619.

    PubMed  CAS  Google Scholar 

  • Mo, Y. Y., & Moschos, S. J. (2005). Targeting Ubc9 for cancer therapy. Expert Opinion of Therapeutic Targets, 9(6), 1203–1216.

    CAS  Google Scholar 

  • Mohideen, F., Capili, A. D., Bilimoria, P. M., Yamada, T., Bonni, A., & Lima, C. D. (2009). A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nature Structural & Molecular Biology, 16(9), 945–952.

    CAS  Google Scholar 

  • Morris, J. R., Boutell, C., Keppler, M., Densham, R., Weekes, D., Alamshah, A., et al. (2009). The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 462(7275), 886–890.

    PubMed  CAS  Google Scholar 

  • Moschos, S. J., Jukic, D. M., Athanassiou, C., Bhargava, R., Dacic, S., Wang, X., et al. (2010). Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Human Pathology, 41(9), 1286–1298.

    PubMed  CAS  Google Scholar 

  • Moschos, S. J., Smith, A. P., Mandic, M., Athanassiou, C., Watson-Hurst, K., Jukic, D. M., et al. (2007). SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: Identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene, 26(29), 4216–4225.

    PubMed  CAS  Google Scholar 

  • Mossessova, E., & Lima, C. D. (2000). Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Molecular Cell, 5(5), 865–876.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S., Thomas, M., Dadgar, N., Lieberman, A. P., & Iniguez-Lluhi, J. A. (2009). Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. Journal of Biological Chemistry, 284(32), 21296–21306.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., Arnaoutov, A., & Dasso, M. (2010). The SUMO protease SENP6 is essential for inner kinetochore assembly. Journal of Cell Biology, 188(5), 681–692.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan, T., Kametaka, A., et al. (2006). SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. Journal of Cell Biology, 174(7), 939–949.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: The SUMO proteases. Trends in Biochemical Sciences, 32(6), 286–295.

    PubMed  CAS  Google Scholar 

  • Mullen, J. R., & Brill, S. J. (2008). Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. Journal of Biological Chemistry, 283(29), 19912–19921.

    PubMed  CAS  Google Scholar 

  • Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., et al. (2005). The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Developmental Cell, 9(6), 769–779.

    PubMed  CAS  Google Scholar 

  • Novatchkova, M., Bachmair, A., Eisenhaber, B., & Eisenhaber, F. (2005). Proteins with two SUMO-like domains in chromatin-associated complexes: The RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics, 6, 22.

    PubMed  Google Scholar 

  • Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., & Yasuda, H. (1999). In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochemical and Biophysical Research Communications, 254(3), 693–698.

    PubMed  CAS  Google Scholar 

  • Ouyang, J., Shi, Y., Valin, A., Xuan, Y., & Gill, G. (2009). Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Molecular Cell, 34(2), 145–154.

    PubMed  CAS  Google Scholar 

  • Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H., & Bohren, K. M. (2005). A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and Biophysical Research Communications, 337(2), 517–520.

    PubMed  CAS  Google Scholar 

  • Panse, V. G., Kuster, B., Gerstberger, T., & Hurt, E. (2003). Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nature Cell Biology, 5(1), 21–27.

    PubMed  CAS  Google Scholar 

  • Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R., Aitchison, J., Matunis, M., et al. (2006). Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nature Methods, 3(7), 533–539.

    PubMed  CAS  Google Scholar 

  • Pelisch, F., Gerez, J., Druker, J., Schor, I. E., Munoz, M. J., Risso, G., et al. (2010). The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proceedings of National Academy of Sciences of the United States of America, 107(37), 16119–16124.

    CAS  Google Scholar 

  • Perry, J., Kleckner, N., & Borner, G. V. (2005). Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proceedings of National Academy of Sciences of the United States of America, 102(49), 17594–17599.

    CAS  Google Scholar 

  • Picard, N., Caron, V., Bilodeau, S., Sanchez, M., Mascle, X., Aubry, M., et al. (2012). Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta. Molecular and Cellular Biology, 32(14), 2709–2721.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J. S., Dejean, A., & Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108(1), 109–120.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Knipscheer, P., Oberhofer, E., van Dijk, W. J., Korner, R., Olsen, J. V., et al. (2005). SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature Structural & Molecular Biology, 12(3), 264–269.

    CAS  Google Scholar 

  • Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K., & Melchior, F. (2004). The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nature Structural & Molecular Biology, 11(10), 984–991.

    CAS  Google Scholar 

  • Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    PubMed  CAS  Google Scholar 

  • Pilla, E., Moller, U., Sauer, G., Mattiroli, F., Melchior, F., & Geiss-Friedlander, R. (2012). A novel SUMO1-specific interacting motif in dipeptidyl peptidase 9 (DPP9) that is important for enzymatic regulation. Journal of Biological Chemistry, 287(53), 44320–44329.

    PubMed  CAS  Google Scholar 

  • Pinto, M. P., Carvalho, A. F., Grou, C. P., Rodriguez-Borges, J. E., Sa-Miranda, C., & Azevedo, J. E. (2012). Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochimica et Biophysica Acta, 1823(10), 1958–1966.

    PubMed  CAS  Google Scholar 

  • Plant, L. D., Dowdell, E. J., Dementieva, I. S., Marks, J. D., & Goldstein, S. A. (2011). SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. Journal of General Physiology, 137(5), 441–454.

    PubMed  CAS  Google Scholar 

  • Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H., & Hay, R. T. (2012). Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature, 489(7414), 115–120.

    PubMed  CAS  Google Scholar 

  • Potts, P. R. (2009). The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA Repair (Amst), 8(4), 499–506.

    CAS  Google Scholar 

  • Potts, P. R., & Yu, H. (2005). Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Molecular and Cellular Biology, 25(16), 7021–7032.

    PubMed  CAS  Google Scholar 

  • Poulsen, S. L., Hansen, R. K., Wagner, S. A., van Cuijk, L., van Belle, G. J., Streicher, W., et al. (2013). RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. Journal of Cell Biology, 201(6), 797–807.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Huang, Y., Burns, R. J., Haan, E., Thompson, P. D., Blumbergs, P. C., et al. (2003). SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Experimental Neurology, 184(1), 436–446.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Raftery, M. J., Chegini, F., Blumbergs, P. C., & Gai, W. P. (2008). NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathologica, 116(6), 603–614.

    PubMed  CAS  Google Scholar 

  • Praefcke, G. J., Hofmann, K., & Dohmen, R. J. (2012). SUMO playing tag with ubiquitin. Trends in Biochemical Sciences, 37(1), 23–31.

    PubMed  CAS  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J., Tainer, J. A., et al. (2007). SUMO-targeted ubiquitin ligases in genome stability. EMBO Journal, 26(18), 4089–4101.

    PubMed  CAS  Google Scholar 

  • Prudden, J., Perry, J. J., Arvai, A. S., Tainer, J. A., & Boddy, M. N. (2009). Molecular mimicry of SUMO promotes DNA repair. Nature Structural & Molecular Biology, 16(5), 509–516.

    CAS  Google Scholar 

  • Prudden, J., Perry, J. J., Nie, M., Vashisht, A. A., Arvai, A. S., Hitomi, C., et al. (2011). DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes. Molecular and Cellular Biology, 31(11), 2299–2310.

    PubMed  CAS  Google Scholar 

  • Psakhye, I., & Jentsch, S. (2012). Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell, 151(4), 807–820.

    PubMed  CAS  Google Scholar 

  • Qu, J., Liu, G. H., Wu, K., Han, P., Wang, P., Li, J., et al. (2007). Nitric oxide destabilizes Pias3 and regulates sumoylation. PLoS ONE, 2(10), e1085.

    PubMed  Google Scholar 

  • Rajendra, R., Malegaonkar, D., Pungaliya, P., Marshall, H., Rasheed, Z., Brownell, J., et al. (2004). Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. Journal of Biological Chemistry, 279(35), 36440–36444.

    PubMed  CAS  Google Scholar 

  • Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res, 40(Database issue), D343–D350.

    Google Scholar 

  • Reverter, D., & Lima, C. D. (2004). A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure, 12(8), 1519–1531.

    PubMed  CAS  Google Scholar 

  • Reverter, D., & Lima, C. D. (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature, 435(7042), 687–692.

    PubMed  CAS  Google Scholar 

  • Reynolds, A., Qiao, H., Yang, Y., Chen, J. K., Jackson, N., Biswas, K., et al. (2013). RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nature Genetics, 45(3), 269–278.

    PubMed  CAS  Google Scholar 

  • Ribet, D., Hamon, M., Gouin, E., Nahori, M. A., Impens, F., Neyret-Kahn, H., et al. (2010). Listeria monocytogenes impairs SUMOylation for efficient infection. Nature, 464(7292), 1192–1195.

    PubMed  CAS  Google Scholar 

  • Riedel, M., Goldbaum, O., Wille, M., & Richter-Landsberg, C. (2011). Membrane lipid modification by docosahexaenoic acid (DHA) promotes the formation of alpha-synuclein inclusion bodies immunopositive for SUMO-1 in oligodendroglial cells after oxidative stress. Journal of Molecular Neuroscience, 43(3), 290–302.

    PubMed  CAS  Google Scholar 

  • Riley, B. E., Zoghbi, H. Y., & Orr, H. T. (2005). SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. Journal of Biological Chemistry, 280(23), 21942–21948.

    PubMed  CAS  Google Scholar 

  • Ronen, O., Malone, J. P., Kay, P., Bivens, C., Hall, K., Paruchuri, L. P., et al. (2009). Expression of a novel marker, Ubc9, in squamous cell carcinoma of the head and neck. Head and Neck, 31(7), 845–855.

    PubMed  Google Scholar 

  • Roscioli, E., Di Francesco, L., Bolognesi, A., Giubettini, M., Orlando, S., Harel, A., et al. (2012). Importin-beta negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. Journal of Cell Biology, 196(4), 435–450.

    PubMed  CAS  Google Scholar 

  • Ross, S., Best, J. L., Zon, L. I., & Gill, G. (2002). SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Molecular Cell, 10(4), 831–842.

    PubMed  CAS  Google Scholar 

  • Roth, W., Sustmann, C., Kieslinger, M., Gilmozzi, A., Irmer, D., Kremmer, E., et al. (2004). PIASy-deficient mice display modest defects in IFN and Wnt signaling. Journal of Immunology, 173(10), 6189–6199.

    CAS  Google Scholar 

  • Rytinki, M. M., Kaikkonen, S., Pehkonen, P., Jaaskelainen, T., & Palvimo, J. J. (2009). PIAS proteins: Pleiotropic interactors associated with SUMO. Cellular and Molecular Life Sciences, 66(18), 3029–3041.

    PubMed  CAS  Google Scholar 

  • Ryu, H., & Azuma, Y. (2010). Rod/Zw10 complex is required for PIASy-dependent centromeric SUMOylation. Journal of Biological Chemistry, 285(42), 32576–32585.

    PubMed  CAS  Google Scholar 

  • Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., & Grosschedl, R. (2001). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes & Development, 15(23), 3088–3103.

    CAS  Google Scholar 

  • Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.

    PubMed  CAS  Google Scholar 

  • Santti, H., Mikkonen, L., Anand, A., Hirvonen-Santti, S., Toppari, J., Panhuysen, M., et al. (2005). Disruption of the murine PIASx gene results in reduced testis weight. Journal of Molecular Endocrinology, 34(3), 645–654.

    PubMed  CAS  Google Scholar 

  • Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., et al. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO Journal, 21(19), 5206–5215.

    PubMed  CAS  Google Scholar 

  • Schmidt, D., & Muller, S. (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proceedings of National Academy of Sciences of the United States of America, 99(5), 2872–2877.

    CAS  Google Scholar 

  • Schmidt, D., & Muller, S. (2003). PIAS/SUMO: New partners in transcriptional regulation. Cellular and Molecular Life Sciences, 60(12), 2561–2574.

    PubMed  CAS  Google Scholar 

  • Schulz, S., Chachami, G., Kozaczkiewicz, L., Winter, U., Stankovic-Valentin, N., Haas, P., et al. (2012). Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Reports, 13(10), 930–938.

    PubMed  CAS  Google Scholar 

  • Sekiyama, N., Arita, K., Ikeda, Y., Hashiguchi, K., Ariyoshi, M., Tochio, H., et al. (2010). Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins, 78(6), 1491–1502.

    PubMed  CAS  Google Scholar 

  • Shao, R., Zhang, F. P., Tian, F., Anders Friberg, P., Wang, X., Sjoland, H., et al. (2004). Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Letters, 569(1–3), 293–300.

    PubMed  CAS  Google Scholar 

  • Sharrocks, A. D. (2006). PIAS proteins and transcriptional regulation–more than just SUMO E3 ligases? Genes & Development, 20(7), 754–758.

    CAS  Google Scholar 

  • Shen, L. N., Geoffroy, M. C., Jaffray, E. G., & Hay, R. T. (2009). Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochemical Journal, 421(2), 223–230.

    PubMed  CAS  Google Scholar 

  • Shen, L., Tatham, M. H., Dong, C., Zagorska, A., Naismith, J. H., & Hay, R. T. (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nature Structural & Molecular Biology, 13(12), 1069–1077.

    CAS  Google Scholar 

  • Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J. H., Oh, B. H., et al. (2012). DeSUMOylating isopeptidase: A second class of SUMO protease. EMBO Reports, 13(4), 339–346.

    PubMed  CAS  Google Scholar 

  • Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13(1), 96–108.

    PubMed  CAS  Google Scholar 

  • Silver, H. R., Nissley, J. A., Reed, S. H., Hou, Y. M., & Johnson, E. S. (2011). A role for SUMO in nucleotide excision repair. DNA Repair (Amst), 10(12), 1243–1251.

    CAS  Google Scholar 

  • Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., et al. (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667), 100–104.

    PubMed  CAS  Google Scholar 

  • Stehmeier, P., & Muller, S. (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Molecular Cell, 33(3), 400–409.

    PubMed  CAS  Google Scholar 

  • Su, Y. F., Yang, T., Huang, H., Liu, L. F., & Hwang, J. (2012). Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity. PLoS ONE, 7(4), e34250.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., Sixt, K. M., Barrow, R., & Snyder, S. H. (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932), 1327–1330.

    PubMed  CAS  Google Scholar 

  • Suh, H. Y., Kim, J. H., Woo, J. S., Ku, B., Shin, E. J., Yun, Y., et al. (2012). Crystal structure of DeSI-1, a novel deSUMOylase belonging to a putative isopeptidase superfamily. Proteins, 80(8), 2099–2104.

    PubMed  CAS  Google Scholar 

  • Swaminathan, S., Kiendl, F., Korner, R., Lupetti, R., Hengst, L., & Melchior, F. (2004). RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. Journal of Cell Biology, 164(7), 965–971.

    PubMed  CAS  Google Scholar 

  • Tago, K., Chiocca, S., & Sherr, C. J. (2005). Sumoylation induced by the Arf tumor suppressor: A p53-independent function. Proceedings of National Academy of Sciences of the United States of America, 102(21), 7689–7694.

    CAS  Google Scholar 

  • Takahashi, Y., Iwase, M., Konishi, M., Tanaka, M., Toh-e, A., & Kikuchi, Y. (1999). Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochemical and Biophysical Research Communications, 259(3), 582–587.

    PubMed  CAS  Google Scholar 

  • Takashima, H., Boerkoel, C. F., John, J., Saifi, G. M., Salih, M. A., Armstrong, D., et al. (2002). Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nature Genetics, 32(2), 267–272.

    PubMed  CAS  Google Scholar 

  • Tatham, M. H., Geoffroy, M. C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E. G., et al. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 10(5), 538–546.

    PubMed  CAS  Google Scholar 

  • Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 276(38), 35368–35374.

    PubMed  CAS  Google Scholar 

  • Tatham, M. H., Kim, S., Jaffray, E., Song, J., Chen, Y., & Hay, R. T. (2005). Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nature Structural & Molecular Biology, 12(1), 67–74.

    CAS  Google Scholar 

  • Terashima, T., Kawai, H., Fujitani, M., Maeda, K., & Yasuda, H. (2002). SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. NeuroReport, 13(17), 2359–2364.

    PubMed  CAS  Google Scholar 

  • Tomasi, M. L., Tomasi, I., Ramani, K., Pascale, R. M., Xu, J., Giordano, P., et al. (2012). S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology, 56(3), 982–993.

    PubMed  CAS  Google Scholar 

  • Truong, K., Lee, T. D., & Chen, Y. (2012). Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity. Journal of Biological Chemistry, 287(19), 15154–15163.

    PubMed  CAS  Google Scholar 

  • Ueda, H., Goto, J., Hashida, H., Lin, X., Oyanagi, K., Kawano, H., et al. (2002). Enhanced SUMOylation in polyglutamine diseases. Biochemical and Biophysical Research Communications, 293(1), 307–313.

    PubMed  CAS  Google Scholar 

  • Ullmann, R., Chien, C. D., Avantaggiati, M. L., & Muller, S. (2012). An acetylation switch regulates SUMO-dependent protein interaction networks. Molecular Cell, 46(6), 759–770.

    PubMed  CAS  Google Scholar 

  • Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnellhardt, M., et al. (2007). Ubiquitin-dependent proteolytic control of SUMO conjugates. Journal of Biological Chemistry, 282(47), 34167–34175.

    PubMed  CAS  Google Scholar 

  • van Niekerk, E. A., Willis, D. E., Chang, J. H., Reumann, K., Heise, T., & Twiss, J. L. (2007). Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proceedings of National Academy of Sciences of the United States of America, 104(31), 12913–12918.

    Google Scholar 

  • Vyas, R., Kumar, R., Clermont, F., Helfricht, A., Kalev, P., Sotiropoulou, P., et al. (2013). RNF4 is required for DNA double-strand break repair in vivo. Cell Death and Differentiation, 20(3), 490–502.

    PubMed  CAS  Google Scholar 

  • Walde, S., Thakar, K., Hutten, S., Spillner, C., Nath, A., Rothbauer, U., et al. (2012). The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Traffic, 13(2), 218–233.

    PubMed  Google Scholar 

  • Wang, J. (2011). Cardiac function and disease: Emerging role of small ubiquitin-related modifier. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(4), 446–457.

    PubMed  CAS  Google Scholar 

  • Wang, L., & Banerjee, S. (2004). Differential PIAS3 expression in human malignancy. Oncology Reports, 11(6), 1319–1324.

    PubMed  CAS  Google Scholar 

  • Wang, C. Y., & She, J. X. (2008). SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metabolism Research and Reviews, 24(2), 93–102.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Wang, Y., Chen, L., He, L., Li, W., & Jiang, H. (2012). Expression characteristics of the SUMOylation genes SUMO-1 and Ubc9 in the developing testis and ovary of Chinese mitten crab, Eriocheir sinensis. Gene, 501(2), 135–143.

    PubMed  CAS  Google Scholar 

  • Weger, S., Hammer, E., & Heilbronn, R. (2005). Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Letters, 579(22), 5007–5012.

    PubMed  CAS  Google Scholar 

  • Wei, W., Yang, P., Pang, J., Zhang, S., Wang, Y., Wang, M. H., et al. (2008). A stress-dependent SUMO4 sumoylation of its substrate proteins. Biochemical and Biophysical Research Communications, 375(3), 454–459.

    PubMed  CAS  Google Scholar 

  • Weisshaar, S. R., Keusekotten, K., Krause, A., Horst, C., Springer, H. M., Gottsche, K., et al. (2008). Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Letters, 582(21–22), 3174–3178.

    PubMed  CAS  Google Scholar 

  • Werner, A., Flotho, A., & Melchior, F. (2012). The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Molecular Cell, 46(3), 287–298.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. A., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochemistry Journal, 428(2), 133–145.

    CAS  Google Scholar 

  • Wong, K. A., Kim, R., Christofk, H., Gao, J., Lawson, G., & Wu, H. (2004). Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Molecular and Cellular Biology, 24(12), 5577–5586.

    PubMed  CAS  Google Scholar 

  • Woods, Y. L., Xirodimas, D. P., Prescott, A. R., Sparks, A., Lane, D. P., & Saville, M. K. (2004). p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. Journal of Biological Chemistry, 279(48), 50157–50166.

    PubMed  CAS  Google Scholar 

  • Wotton, D., & Merrill, J. C. (2007). Pc2 and SUMOylation. Biochemical Society Transactions, 35(Pt 6), 1401–1404.

    PubMed  CAS  Google Scholar 

  • Wu, J., Matunis, M. J., Kraemer, D., Blobel, G., & Coutavas, E. (1995). Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. Journal of Biological Chemistry, 270(23), 14209–14213.

    PubMed  CAS  Google Scholar 

  • Wu, F., Zhu, S., Ding, Y., Beck, W. T., & Mo, Y. Y. (2009). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clinical Cancer Research, 15(5), 1550–1557.

    PubMed  CAS  Google Scholar 

  • Xie, Y., Kerscher, O., Kroetz, M. B., McConchie, H. F., Sung, P., & Hochstrasser, M. (2007). The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. Journal of Biological Chemistry, 282(47), 34176–34184.

    PubMed  CAS  Google Scholar 

  • Xirodimas, D. P., Chisholm, J., Desterro, J. M., Lane, D. P., & Hay, R. T. (2002). P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Letters, 528(1–3), 207–211.

    PubMed  CAS  Google Scholar 

  • Xu, Z., & Au, S. W. (2005). Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochemistry Journal, 386(Pt 2), 325–330.

    CAS  Google Scholar 

  • Xu, Z., Lam, L. S., Lam, L. H., Chau, S. F., Ng, T. B., & Au, S. W. (2008). Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB Journal, 22(1), 127–137.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Zuo, Y., Zhang, H., Kang, X., Yue, F., Yi, Z., et al. (2010). Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. Journal of Biological Chemistry, 285(47), 36682–36688.

    PubMed  CAS  Google Scholar 

  • Yan, S., Sun, X., Xiang, B., Cang, H., Kang, X., Chen, Y., et al. (2010). Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO Journal, 29(22), 3773–3786.

    PubMed  CAS  Google Scholar 

  • Yang, S. H., Galanis, A., Witty, J., & Sharrocks, A. D. (2006). An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO Journal, 25(21), 5083–5093.

    PubMed  CAS  Google Scholar 

  • Yang, S. H., Jaffray, E., Hay, R. T., & Sharrocks, A. D. (2003). Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Molecular Cell, 12(1), 63–74.

    PubMed  CAS  Google Scholar 

  • Yang, X., Li, H., Zhou, Z., Wang, W. H., Deng, A., Andrisani, O., et al. (2009). Plk1-mediated phosphorylation of Topors regulates p53 stability. Journal of Biological Chemistry, 284(28), 18588–18592.

    PubMed  CAS  Google Scholar 

  • Yang, K., Moldovan, G. L., Vinciguerra, P., Murai, J., Takeda, S., & D’Andrea, A. D. (2011a). Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes & Development, 25(17), 1847–1858.

    CAS  Google Scholar 

  • Yang, S. H., & Sharrocks, A. D. (2006). PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. Molecular Cell, 22(4), 477–487.

    PubMed  CAS  Google Scholar 

  • Yang, W., Sheng, H., Homi, H. M., Warner, D. S., & Paschen, W. (2008). Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation—A new target for therapeutic intervention? Journal of Neurochemistry, 106(3), 989–999.

    PubMed  CAS  Google Scholar 

  • Yang, W., Thompson, J. W., Wang, Z., Wang, L., Sheng, H., Foster, M. W., et al. (2012). Analysis of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative proteomics. Journal of Proteome Research, 11(2), 1108–1117.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Tse, A. K., Li, P., Ma, Q., Xiang, S., Nicosia, S. V., et al. (2011b). Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene, 30(19), 2207–2218.

    PubMed  CAS  Google Scholar 

  • Yang, W., Wang, L., Roehn, G., Pearlstein, R. D., Ali-Osman, F., Pan, H., et al. (2013). Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Science, 104(1), 70–77.

    PubMed  CAS  Google Scholar 

  • Yeh, E. T., Gong, L., & Kamitani, T. (2000). Ubiquitin-like proteins: new wines in new bottles. Gene, 248(1–2), 1–14.

    PubMed  CAS  Google Scholar 

  • Yin, Y., Seifert, A., Chua, J. S., Maure, J. F., Golebiowski, F., & Hay, R. T. (2012). SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes & Development, 26(11), 1196–1208.

    CAS  Google Scholar 

  • Yokoyama, N., Hayashi, N., Seki, T., Pante, N., Ohba, T., Nishii, K., et al. (1995). A giant nucleopore protein that binds Ran/TC4. Nature, 376(6536), 184–188.

    PubMed  CAS  Google Scholar 

  • Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062–1065.

    PubMed  CAS  Google Scholar 

  • Yunus, A. A., & Lima, C. D. (2009). Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Molecular Cell, 35(5), 669–682.

    PubMed  CAS  Google Scholar 

  • Zhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Janne, O. A. (2008). Sumo-1 function is dispensable in normal mouse development. Molecular and Cellular Biology, 28(17), 5381–5390.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Saitoh, H., & Matunis, M. J. (2002). Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Molecular and Cellular Biology, 22(18), 6498–6508.

    PubMed  CAS  Google Scholar 

  • Zhang, Y. Q., & Sarge, K. D. (2008). Sumoylation of amyloid precursor protein negatively regulates Abeta aggregate levels. Biochemical and Biophysical Research Communications, 374(4), 673–678.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Yuan, X., Yue, L., Fu, J., Luo, L., & Yin, Z. (2010). PIASy interacts with p73alpha and regulates cell cycle in HEK293 cells. Cellular Immunology, 263(2), 235–240.

    PubMed  CAS  Google Scholar 

  • Zhao, X., & Blobel, G. (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proceedings of National Academy of Sciences of the United States of America, 102(13), 4777–4782.

    CAS  Google Scholar 

  • Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M., & Yao, T. P. (2005). Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Molecular and Cellular Biology, 25(19), 8456–8464.

    PubMed  CAS  Google Scholar 

  • Zhao, Z., Tan, X., Zhao, A., Zhu, L., Yin, B., Yuan, J., et al. (2012). microRNA-214-mediated UBC9 expression in glioma. BMB Rep, 45(11), 641–646.

    PubMed  CAS  Google Scholar 

  • Zhou, Y. F., Liao, S. S., Luo, Y. Y., Tang, J. G., Wang, J. L., Lei, L. F., et al. (2013). SUMO-1 modification on K166 of polyQ-expanded ataxin-3 strengthens its stability and increases its cytotoxicity. PLoS ONE, 8(1), e54214.

    PubMed  CAS  Google Scholar 

  • Zhu, S., Sachdeva, M., Wu, F., Lu, Z., & Mo, Y. Y. (2010). Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene, 29(12), 1763–1772.

    PubMed  CAS  Google Scholar 

  • Zhu, J., Zhu, S., Guzzo, C. M., Ellis, N. A., Sung, K. S., Choi, C. Y., et al. (2008). Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. Journal of Biological Chemistry, 283(43), 29405–29415.

    PubMed  CAS  Google Scholar 

  • Zlatanou, A., & Stewart, G. S. (2010). A PIAS-ed view of DNA double strand break repair focuses on SUMO. DNA Repair (Amst), 9(5), 588–592.

    CAS  Google Scholar 

  • Zunino, R., Braschi, E., Xu, L., & McBride, H. M. (2009). Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. Journal of Biological Chemistry, 284(26), 17783–17795.

    PubMed  CAS  Google Scholar 

  • Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., & McBride, H. M. (2007). The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of Cell Science, 120(Pt 7), 1178–1188.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all Pichler laboratory members for critical reading of the manuscript. The work in the Pichler laboratory is funded by the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG, PI 917/1-1, DFG-SPP1365 PI 917/2-1) and the Fritz Thyssen Stiftung (10.11.1.210).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pichler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droescher, M., Chaugule, V.K. & Pichler, A. SUMO Rules: Regulatory Concepts and Their Implication in Neurologic Functions. Neuromol Med 15, 639–660 (2013). https://doi.org/10.1007/s12017-013-8258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8258-6

Keywords

Navigation