Skip to main content

Advertisement

Log in

Magnetic Resonance Microscopy and Immunohistochemistry of the CNS of the Mutant SOD Murine Model of ALS Reveals Widespread Neural Deficits

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons and descending motor tracts of the CNS. We have evaluated the CNS of a murine model of familial ALS based on the over-expression of mutant human superoxide dismutase (mSOD; G93A) using magnetic resonance microscopy (MRM) and immunohistochemistry (IHC). Three-dimensional volumetric analysis was performed from 3D T2*-weighted images acquired at 17.6 T at isotropic resolutions of 40 μm. Compared to controls, mSOD mice had significant reductions in the volumes of total brain, substantia nigra, striatum, hippocampus, and internal capsule, with decreased cortical thickness in primary motor and somatosensory cortices. In the spinal cord, mSOD mice had significantly decreased volume of both the total grey and white matter; in the latter case, the volume change was confined to the dorsal white matter. Increased apoptosis, GFAP positive astrocytes, and/or activated microglia were observed in all those CNS regions that showed volume loss except for the hippocampus. The MRM findings in mSOD over-expressing mice are similar to data previously obtained from a model of ALS-parkinsonism dementia complex (ALS-PDC), in which neural damage occurred following a diet of washed cycad flour containing various neurotoxins. The primary difference between the two models involves a significantly greater decrease in spinal cord white matter volume in mSOD mice, perhaps reflecting variations in degeneration of the descending motor tracts. The extent to which several CNS structures are impacted in both murine models of ALS argues for a reevaluation of the nature of the pathogenesis of ALS since CNS structures involved in Parkinson’s and Alzheimer’s diseases appear to be affected as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alderman, D. W., & Grant, D. M. (1979). An efficient decoupler coil design which reduces heating in conductive samples in superconducting spectrometers. Journal of Magnetic Resonance, 36, 447–451.

    CAS  Google Scholar 

  • Angenstein, F., Niessen, H. G., Goldschmidt, J., Vielhaber, S., Ludolph, A. C., & Scheich, H. (2004). Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. Neuroreport, 15, 2271–2274.

    Article  PubMed  Google Scholar 

  • Armani, M., Pierobon-Bormioli, S., Mostacciuolo, M. L., Cacciavillani, M., Cassol, M. A., Candeago, R. M., & Angelini, C. (1987). Familial ALS: Clinical, genetic and morphological features. Advances in Experimental Medicine and Biology, 209, 109–110.

    PubMed  CAS  Google Scholar 

  • Bock, N. A., Kovacevic, N., Lipina, T. V., Roder, J. C., Ackerman, S. L., & Henkelman, R. M. (2006). In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice. Journal of Neuroscience, 26, 4455–4459.

    Article  PubMed  CAS  Google Scholar 

  • Buee-Scherrer, V., Buee, L., Hof, P. R., Leveugle, B., Gilles, C., Loerzel, A. J., Perl, D. P., & Delacourte, A. (1995). Neurofibrillary degeneration in amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Immunochemical characterization of tau proteins. American Journal of Pathology, 146, 924–932.

    PubMed  CAS  Google Scholar 

  • Carter, R. J., Lione, L. A., Humby, T., Mangiarini, L., Mahal, A., Bates, G. P., Dunnett, S. B., & Morton, A. J. (1999). Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. Journal of Neuroscience, 19, 3248–3257.

    PubMed  CAS  Google Scholar 

  • Charles, T., & Swash, M. (2001). Amyotrophic lateral sclerosis: current understanding. The Journal of Neuroscience Nursing, 33, 245–253.

    PubMed  CAS  Google Scholar 

  • Davies, M. H., Eubanks, J. P., & Powers, M. R. (2006). Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Molecular Vision, 12, 467–477.

    PubMed  CAS  Google Scholar 

  • Duan, W. R., Garner, D. S., Williams, S. D., Funckes-Shippy, C. L., Spath, I. S., & Blomme, E. A. (2003). Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. Journal of Pathology, 199, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Eddleston, M., & Mucke, L. (1993). Molecular profile of reactive astrocytes – implications for their role in neurologic disease . Neuroscience, 54, 15–36.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, A., & Krieger, C. (1998). Amyotrophic lateral sclerosis: A synthesis of research and clinical practice. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Falangola, M. F., Ardekani, B. A., Lee, S. P., Babb, J. S., Bogart, A., Dyakin, V. V., Nixon, R., Duff, K., & Helpern, J. A. (2005). Application of a non-linear image registration algorithm to quantitative analysis of T2 relaxation time in transgenic mouse models of AD pathology. Journal of Neuroscience Methods, 144, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J. R., Herrmann, J. E., Woo, M. J., Tansey, K. E., Doan, N. B., & Sofroniew, M. V. (2004). Reactive astrocytes protect tissue and preserve function after spinal cord injury. Journal of Neuroscience, 24, 2143–2155.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M. A., & Glass, J. D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Experimental Neurology, 185, 232–240.

    Article  PubMed  Google Scholar 

  • Grosskreutz, J., Kaufman, J., Frädrich, J., Dengler, R., Heinze, H. J., & Peschel, T. (2006). Widespread sensimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurology, 6, 17–26.

    Article  PubMed  Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H. X., Chen, W., Zhai, P., Sufit, R. L., & Siddique, T. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D., Oostveen, J. A., & Gurney, M. E. (1998). Relationship of microglia and astrocyte activation to disease onset and progression in a transgenic model of familial ALS. Glia, 23, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Hamson, D. K., Hu, J. H., Krieger, C., & Watson, N. V. (2002). Lumbar motoneuron fate in a mouse model of amyotrophic lateral sclerosis. Neuroreport, 13, 2291–2294.

    Article  PubMed  Google Scholar 

  • Hardy, W. N., & Whitehead, L. A. (1981). Split-ring resonator for use in magnetic resonance from 200–2000 MHz. The Review of Scientific Instruments, 52, 213–216.

    Article  Google Scholar 

  • Hirano, A. (1992). Amyotrophic lateral sclerosis and parkinsonism-dementia complex on Guam: Immunohistochemical studies. The Keio Journal of Medicine, 41, 6–9.

    PubMed  CAS  Google Scholar 

  • Hirano, A., Malamud, N., Elizan, T. S., & Kurland, L. T. (1966). Amyotrophic lateral sclerosis and Parkinsonism-dementia complex on Guam. Further pathologic studies. Archives of Neurology, 15, 35–51.

    PubMed  CAS  Google Scholar 

  • Holmes, G. (1909). The pathology of amyotrophic lateral sclerosis. Reviews of Neurology and Psychiatry, 4, 693–724.

    Google Scholar 

  • Hwang, I. K., Yoo, K. Y., Kim, D. W., Choi, S. Y., Kang, T. C., Kim, Y. S., & Won, M. H. (2006). Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochemical Research, 31, 957–965.

    Article  PubMed  CAS  Google Scholar 

  • Imai, Y., Ibata, I., Ito, D., Ohsawa, K., & Kohsaka, S. (1996). A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochemical and Biophysics Research Communications, 224, 855–862.

    Article  CAS  Google Scholar 

  • Jacobs, R. E., Ahrens, E. T., Dickinson, M. E., & Laidlaw, D. (1999). Towards a microMRI atlas of mouse development. Computer Medical Imaging and Graphics, 23, 15–24.

    Article  CAS  Google Scholar 

  • Kurland, L. T. (1988). Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends in Neuroscience, 11, 51–54.

    Article  CAS  Google Scholar 

  • Kurland, L. T., & Mulder, D. W. (1954). Epidemiologic investigations of amyotrophic lateral sclerosis. Neurology, 4, 355–378.

    PubMed  CAS  Google Scholar 

  • Lee, V. M., Page, C. D., Wu, H. L., & Schlaepfer, W. W. (1984). Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins. Journal of Neurochemistry, 42, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J. (1994). New pathological findings in amyotrophic lateral sclerosis. Journal of Neurological Sciences, 124, 38–51.

    Article  Google Scholar 

  • Ma, Y., Hof, P. R., Grant, S. C., Blackband, S. J., Bennett, R., Slatest, L., McGuigan, M. D., & Benveniste, H. (2005). A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience, 135, 1203–1215.

    Article  PubMed  CAS  Google Scholar 

  • Marler, T. E., Lee, V., & Shaw, C. A. (2005). Cycad toxins and neurological diseases in Guam: Defining theoretical and experimental standards for correlating human disease with environmental toxins. Hortscience, 40(6), 1–9.

    Google Scholar 

  • Murakami, N. (1999). Parkinsonism-dementia complex on Guam – Overview of clinical aspects. Journal of Neurology, 246(Suppl 2), 16–18.

    Article  Google Scholar 

  • Niessen, H. G., Angenstein, F., Sander, K., Kunz, W. S., Teuchert, M., Ludolph, A. C., Heinze, H. J., Scheich, H., & Vielhaber, S. (2006). In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Experimental Neurology, 201, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, M. K., Roberds, S. L., Ellerbrock, B. R., Fleck, T. J., McKinley, D. K., & Gurney, M. E. (2001). Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Annals of Neurology, 50, 730–740.

    Article  PubMed  CAS  Google Scholar 

  • Oyanagi, K., Kawakami, E., Morita, T., & Takahashi, H. (1999). Pursuit of the origin of the large myelinated fibers of the anterolateral funiculus in the spinal cord in humans in relation to the pathomechanism in amyotrophic lateral sclerosis. Acta Neuropathologica, 98, 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Franklin. (2001). The mouse brain in stereotaxic coordinates (2nd ed.). Sydney: Academic press.

  • Peretti-Viton, P., Azulay, J. P., Trefouret, S., Brunel, H., Daniel, C., Viton, J. M., Flori, A., Salazard, B., Pouget, J., Serratrice, G., & Salamon, G. (1999). MRI of the intracranial corticospinal tracts in amyotrophic and primary lateral sclerosis. Neuroradiology, 41, 744–749.

    Article  PubMed  CAS  Google Scholar 

  • Petrik, M. S., Wilson, J. M. B., Grant, S. C., Blackband, S. J., Lai, J., & Shaw, C. A. (2004). Detailed magnetic resonance microscopy-derived volume analysis in a mouse model of ALS-PDC. Society for Neuroscience Abstracts, 341.10.

  • Pirker, W., Djamshidian, S., Asenbaum, S., Gerschlager, W., Tribl, G., Hoffmann, M., & Brucke, T. (2002). Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: A longitudinal beta-CIT SPECT study. Movement Disorders, 17, 45–53.

    Article  PubMed  Google Scholar 

  • Purea, A., & Webb, A. G. (2006). Reversible and irreversible effects of chemical fixation on the NMR properties of single cells. Magnetic Resonance in Medicine, 56, 927–931.

    Article  PubMed  Google Scholar 

  • Rafalowska, J., & Dziewulska, D. (1996). White matter injury in amyotrophic lateral sclerosis (ALS). Folia Neuropathology, 34, 87–91.

    CAS  Google Scholar 

  • Sach, M., Winkler, G., Glauche, V., Liepert, J., Heimbach, B., Koch, M. A., Buchel, C., & Weiller, C. (2004). Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain, 127, 340–350.

    Article  PubMed  Google Scholar 

  • Shaw, C. A., & Wilson, J. M. (2003). Analysis of neurological disease in four dimensions: insight from ALS-PDC epidemiology and animal models. Neuroscience and Biobehavioral Reviews, 27, 493–505.

    Article  PubMed  CAS  Google Scholar 

  • Siddique, T., Nijhawan, D., & Hentati, A. (1996). Molecular genetic basis of familial ALS. Neurology, 47, S27–S34; discussion S34–35.

    PubMed  CAS  Google Scholar 

  • Sidman, R. L., Angevine Jr., J. B., & Pierce, E. T. (1971). Atlas of the mouse brain and spinal cord. Cambridge: Havard University Press.

  • Smith, M. C. (1960). Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 23, 269–282.

    Article  Google Scholar 

  • Strong, M. J. (2006). ALS – Not what we thought. Archives of Neurology, 63, 319–320.

    Article  PubMed  Google Scholar 

  • Strong, M. J., Yang, W., Strong, W. L., Leystra-Lantz, C., Jaffe, H., & Pant, H. C. (2006). Tau protein hyperphosphorylation in sporadic ALS with cognitive impairment. Neurology, 66, 1770–1771.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S. W., Neil, J. J., & Song, S. K. (2003). Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains. Magnetic Resonance in Medicine, 50, 743–748.

    Article  PubMed  Google Scholar 

  • Swash, M. (1998). Early diagnosis of ALS/MND. Journal of the Neurological Sciences, 160(1), S33–S36.

    Article  PubMed  Google Scholar 

  • Thelwall, P. E., Shepherd, T. M., Stanisz, G. J., & Blackband, S. J. (2006). Effects of temperature and aldehyde fixation on tissue water diffusion properties, studied in an erythrocyte ghost tissue model. Magnetic Resonance in Medicine, 56, 282–289.

    Article  PubMed  Google Scholar 

  • Tohyama, T., Lee, V. M., Rorke, L. B., & Trojanowski, J. Q. (1991). Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. The Journal of Comparative Neurology, 310, 285–299.

    Article  PubMed  CAS  Google Scholar 

  • Waragai, M. (1997). MRI and clinical features in amyotrophic lateral sclerosis. Neuroradiology, 39, 847–851.

    Article  PubMed  CAS  Google Scholar 

  • Watson, R. E. Jr., Wiegand, S. J., Clough, R. W., & Hoffman, G. E. (1986). Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides, 7, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. M., Khabazian, I., Pow, D. V., Craig, U. K., & Shaw, C. A. (2003). Decrease in glial glutamate transporter variants and excitatory amino acid receptor down-regulation in a murine model of ALS-PDC. Neuromolecular Medicine, 3, 105–118.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. M., Khabazian, I., Wong, M. C., Seyedalikhani, A., Bains, J. S., Pasqualotto, B. A., Williams, D. E., Andersen, R. J., Simpson, R. J., Smith, R., Craig, U. K., Kurland, L. T., & Shaw, C. A. (2002). Behavioral and neurological correlates of ALS-parkinsonism dementia complex in adult mice fed washed cycad flour. Neuromolecular Medicine, 1, 207–221.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. M., Petrik, M. S., Grant, S. C., Blackband, S. J., Lai, J., & Shaw, C. A. (2004). Quantitative measurement of neurodegeneration in an ALS-PDC model using MR microscopy. Neuroimage, 23, 336–343.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. M., Petrik, M. S., Moghadasian, M. H., & Shaw, C. A. (2005). Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC. Canadian Journal of Physiology and Pharmacology, 83, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Zang, D. W., & Cheema, S. S. (2002). Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience Letters, 332, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Zang, D. W., Yang, Q., Wang, H. X., Egan, G., Lopes, E. C., & Cheema, S. S. (2004). Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. The European Journal of Neuroscience, 20, 1745–1751.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the US Army Medical Research and Materiel Command (#DAMD17-02-1-0678), Scottish Rite Charitable Foundation of Canada, and the Natural Science and Engineering Research Council of Canada (NSERC) to CAS, and by an NSERC grant to CK. MRM studies were made possible through the support of the National High Magnetic Field Laboratory (NSF-0084173) and NCRR/NIH (P41-RR016105) (SB). All MR data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida. We thank Dr. Reyniel Cruz-Aguado (UBC) and Dr. Denis Kay (Neurodyn Inc.) for their invaluable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Petrik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrik, M.S., Wilson, J.M.B., Grant, S.C. et al. Magnetic Resonance Microscopy and Immunohistochemistry of the CNS of the Mutant SOD Murine Model of ALS Reveals Widespread Neural Deficits. Neuromol Med 9, 216–229 (2007). https://doi.org/10.1007/s12017-007-8002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-007-8002-1

Keywords

Navigation